Add files via upload

This commit is contained in:
David Rotermund 2023-02-04 14:27:36 +01:00 committed by GitHub
parent 351a095d35
commit 21796aba07
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
54 changed files with 2735 additions and 12 deletions

View file

@ -64,13 +64,20 @@ void HDynamicCNNCPU::entrypoint(
size_t h_dim_c1 = h_dim_2 * h_dim_3;
size_t h_dim_c2 = h_dim_3;
float* epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
float* epsilon_xy_pointer = nullptr;
size_t epsilon_xy_dim_c0 = 0;
size_t epsilon_xy_dim_c1 = 0;
if (epsilon_xy_pointer_addr != 0)
{
epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
assert((epsilon_xy_pointer != nullptr));
assert((epsilon_xy_dim_0 > 0));
assert((epsilon_xy_dim_1 > 0));
assert((epsilon_xy_dim_2 > 0));
size_t epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
size_t epsilon_xy_dim_c1 = epsilon_xy_dim_2;
epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
epsilon_xy_dim_c1 = epsilon_xy_dim_2;
}
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
assert((epsilon_t_pointer != nullptr));
@ -164,16 +171,18 @@ void HDynamicCNNCPU::update(
{
float* h_ptr;
float* epsilon_xy_ptr;
float* epsilon_xy_ptr = nullptr;
int64_t* input_ptr;
for (size_t counter_x = 0; counter_x < dim_x; counter_x++)
{
for (size_t counter_y = 0; counter_y < dim_y; counter_y++)
{
if (epsilon_xy_dim_c1 != 0)
{
epsilon_xy_ptr = epsilon_xy_pointer +
counter_x * epsilon_xy_dim_c1 + counter_y;
}
h_ptr = h_pointer +
pattern_id * h_dim_c0 + counter_x * h_dim_c2 + counter_y;
@ -251,9 +260,16 @@ void HDynamicCNNCPU::update_one_ip(
spike = input_pointer + counter_spike * input_dim_c1;
if (*spike >= 0)
{
if (epsilon_xy_dim_c0 != 0)
{
epsilon_subsegment =
epsilon_xy_pointer[*spike * epsilon_xy_dim_c0] * epsilon_t_pointer[counter_spike];
}
else
{
epsilon_subsegment = epsilon_t_pointer[counter_spike];
}
w_ptr = weights_pointer + *spike * weights_dim_c0;

View file

@ -0,0 +1,542 @@
#include "HDynamicCNNGPU.h"
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <iostream>
HDynamicCNNGPU::HDynamicCNNGPU()
{
};
HDynamicCNNGPU::~HDynamicCNNGPU()
{
};
void HDynamicCNNGPU::entrypoint(
int64_t h_pointer_addr,
int64_t h_dim_0,
int64_t h_dim_1,
int64_t h_dim_2,
int64_t h_dim_3,
int64_t epsilon_xy_pointer_addr,
int64_t epsilon_xy_dim_0,
int64_t epsilon_xy_dim_1,
int64_t epsilon_xy_dim_2,
int64_t epsilon_t_pointer_addr,
int64_t epsilon_t_dim_0,
int64_t weights_pointer_addr,
int64_t weights_dim_0,
int64_t weights_dim_1,
int64_t input_pointer_addr,
int64_t input_dim_0,
int64_t input_dim_1,
int64_t input_dim_2,
int64_t input_dim_3,
int64_t init_vector_pointer_addr,
int64_t init_vector_dim_0,
int64_t number_of_processes,
float forgetting_offset,
int64_t gpu_tuning_factor)
{
size_t number_of_pattern = input_dim_0;
size_t h_dim = init_vector_dim_0;
float* h_init_ptr = (float*)init_vector_pointer_addr;
assert((h_init_ptr != nullptr));
assert((h_dim > 0));
float* h_pointer = (float*)h_pointer_addr;
assert((h_pointer != nullptr));
assert((h_dim_0 > 0));
assert((h_dim_1 > 0));
assert((h_dim_2 > 0));
assert((h_dim_3 > 0));
size_t h_dim_c0 = h_dim_1 * h_dim_2 * h_dim_3;
size_t h_dim_c1 = h_dim_2 * h_dim_3;
size_t h_dim_c2 = h_dim_3;
float* epsilon_xy_pointer = nullptr;
size_t epsilon_xy_dim_c0 = 0;
size_t epsilon_xy_dim_c1 = 0;
if (epsilon_xy_pointer_addr != 0)
{
epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
assert((epsilon_xy_pointer != nullptr));
assert((epsilon_xy_dim_0 > 0));
assert((epsilon_xy_dim_1 > 0));
assert((epsilon_xy_dim_2 > 0));
epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
epsilon_xy_dim_c1 = epsilon_xy_dim_2;
}
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
assert((epsilon_t_pointer != nullptr));
assert((epsilon_t_dim_0 > 0));
float* weights_pointer = (float*)weights_pointer_addr;
assert((weights_pointer != nullptr));
assert((weights_dim_0 > 0));
assert((weights_dim_1 > 0));
size_t weights_dim_c0 = weights_dim_1;
int64_t* input_pointer = (int64_t*)input_pointer_addr;
assert((input_pointer != nullptr));
assert((input_dim_0 > 0));
assert((input_dim_1 > 0));
assert((input_dim_2 > 0));
assert((input_dim_3 > 0));
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
size_t input_dim_c1 = input_dim_2 * input_dim_3;
size_t input_dim_c2 = input_dim_3;
assert((h_dim == weights_dim_1));
size_t number_of_spikes = input_dim_1;
size_t dim_x = input_dim_2;
size_t dim_y = input_dim_3;
float forgetting_offset_local = forgetting_offset / static_cast<float>(h_dim);
// --------------------
assert((number_of_processes <= 0));
gpu_update(
h_init_ptr,
h_pointer,
h_dim_c0,
h_dim_c1,
h_dim_c2,
h_dim,
epsilon_xy_pointer,
epsilon_xy_dim_c0,
epsilon_xy_dim_c1,
epsilon_t_pointer,
weights_pointer,
weights_dim_c0,
input_pointer,
input_dim_c0,
input_dim_c1,
input_dim_c2,
number_of_spikes,
dim_x,
dim_y,
forgetting_offset,
forgetting_offset_local,
number_of_pattern,
gpu_tuning_factor);
return;
};
__device__ void gpu_update_one_ip(
float* __restrict__ h_init_ptr,
float* __restrict__ h_pointer,
size_t h_dim_c1,
size_t h_dim,
float* __restrict__ weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c1,
float* __restrict__ epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
float* __restrict__ epsilon_t_pointer,
size_t number_of_spikes,
float forgetting_offset,
float forgetting_offset_local,
float* __restrict__ h_temp,
float* __restrict__ h_subsegment
)
{
float h_temp_sum;
float temp_value;
float epsilon_subsegment;
float epsilon_scale = 1.0;
int64_t* spike;
float* w_ptr;
// float* h_temp = new float[h_dim];
// float* h_subsegment = new float[h_dim];
// Initialize the sub-segement
for (size_t counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] = h_init_ptr[counter];
}
for (size_t counter_spike = 0; counter_spike < number_of_spikes; counter_spike++)
{
if (epsilon_scale > 1E10)
{
temp_value = 1.0 / epsilon_scale;
for (size_t counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] *= temp_value;
}
epsilon_scale = 1.0;
}
spike = input_pointer + counter_spike * input_dim_c1;
if (*spike >= 0)
{
if (epsilon_xy_dim_c0 != 0)
{
epsilon_subsegment =
epsilon_xy_pointer[*spike *epsilon_xy_dim_c0] * epsilon_t_pointer[counter_spike];
}
else
{
epsilon_subsegment = epsilon_t_pointer[counter_spike];
}
w_ptr = weights_pointer + *spike * weights_dim_c0;
for (size_t counter = 0; counter < h_dim; counter++)
{
h_temp[counter] = h_subsegment[counter] * w_ptr[counter];
}
h_temp_sum = 0.0;
for (size_t counter = 0; counter < h_dim; counter++)
{
h_temp_sum += h_temp[counter];
}
if (h_temp_sum > 1E-10)
{
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
for (size_t counter = 0; counter < h_dim; counter++)
{
h_temp[counter] *= temp_value;
}
for (size_t counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] += h_temp[counter];
}
if (forgetting_offset_local > 0.0)
{
temp_value =
epsilon_scale * epsilon_subsegment * forgetting_offset_local;
for (size_t counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] += temp_value;
}
epsilon_scale *=
1.0 + epsilon_subsegment * (1.0 + forgetting_offset);
}
else
{
epsilon_scale *= 1.0 + epsilon_subsegment * 1.0;
}
}
}
}
temp_value = 1.0 / epsilon_scale;
for (size_t counter = 0; counter < h_dim; counter++)
{
h_pointer[counter * h_dim_c1] =
h_subsegment[counter] * temp_value;
}
// delete[] h_temp;
// delete[] h_subsegment;
return;
};
__global__ void kernel_spike_generation(
float* __restrict__ h_init_ptr,
float* __restrict__ h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* __restrict__ weights_pointer,
size_t weights_dim_c0,
int64_t* __restrict__ input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
float* __restrict__ epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* __restrict__ epsilon_t_pointer,
size_t number_of_spikes,
float forgetting_offset,
float forgetting_offset_local,
size_t dim_x,
size_t dim_y,
size_t dim_xy,
size_t max_threadable_tasks,
float* __restrict__ temp_memory_a,
float* __restrict__ temp_memory_b
)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_threadable_tasks)
{
float* h_ptr;
float* epsilon_xy_ptr = nullptr;
int64_t* input_ptr;
float* temp_memory_ptr_a = temp_memory_a + idx * h_dim;
float* temp_memory_ptr_b = temp_memory_b + idx * h_dim;
// int pattern_id = idx;
int pattern_id = idx / dim_xy;
int position_xy = idx - (pattern_id * dim_xy);
// size_t position_x = blockIdx.y;
// size_t position_y = blockIdx.z;
size_t position_x = position_xy / dim_y;
size_t position_y = position_xy - (position_x * dim_y);
if (epsilon_xy_dim_c1 != 0)
{
epsilon_xy_ptr = epsilon_xy_pointer +
position_x * epsilon_xy_dim_c1 + position_y;
}
h_ptr = h_pointer +
pattern_id * h_dim_c0 + position_x * h_dim_c2 + position_y;
input_ptr = input_pointer +
pattern_id * input_dim_c0 + position_x * input_dim_c2 + position_y;
gpu_update_one_ip(
h_init_ptr,
h_ptr,
h_dim_c1,
h_dim,
weights_pointer,
weights_dim_c0,
input_ptr,
input_dim_c1,
epsilon_xy_ptr,
epsilon_xy_dim_c0,
epsilon_t_pointer,
number_of_spikes,
forgetting_offset,
forgetting_offset_local,
temp_memory_ptr_a,
temp_memory_ptr_b
);
}
};
// Let's face it... We need a better way to paralelize it...
void HDynamicCNNGPU::gpu_update(
float* h_init_ptr,
float* h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer,
float* weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
size_t number_of_spikes,
size_t dim_x,
size_t dim_y,
float forgetting_offset,
float forgetting_offset_local,
size_t number_of_pattern,
size_t gpu_tuning_factor)
{
cudaError_t status;
assert((dim_x < 65535));
assert((dim_y < 65535));
// //////////////////////////////////////
// Calculate the distribution on the GPU
// //////////////////////////////////////
int min_grid_size;
int block_size;
int grid_size;
size_t dynamic_s_mem_size = 0;
size_t max_threadable_tasks = number_of_pattern * dim_x * dim_y;
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=blocksize#occupancy-calculator
status = cudaOccupancyMaxPotentialBlockSize(&min_grid_size, &block_size,
(void*)kernel_spike_generation,
dynamic_s_mem_size, max_threadable_tasks);
if (status != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: "
<< __FILE__
<< ":"
<< __LINE__
<< std::endl;
std::cerr << cudaGetErrorString(status) << std::endl;
}
assert((status == cudaSuccess));
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
// Maximum dimensionality of grid of thread blocks: 3
// Maximum x -dimension of a grid of thread blocks: (2^31)-1
// Maximum y- or z-dimension of a grid of thread blocks: 65535
// Reduce the automatic block size with our guess
if ((gpu_tuning_factor > 0) && (gpu_tuning_factor < block_size))
{
block_size = int(gpu_tuning_factor);
}
// Round up according to array size
// (I will separate x and y into other grid dimentsions soon)
// grid_size = (number_of_pattern + block_size - 1) / block_size;
grid_size = (max_threadable_tasks + block_size - 1) / block_size;
float* temp_memory_a = nullptr;
status = cudaMalloc((void**)&temp_memory_a, h_dim * max_threadable_tasks * sizeof(float));
if (status != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: "
<< __FILE__
<< ":"
<< __LINE__
<< std::endl;
std::cerr << cudaGetErrorString(status) << std::endl;
}
assert((status == cudaSuccess));
float* temp_memory_b = nullptr;
status = cudaMalloc((void**)&temp_memory_b, h_dim * max_threadable_tasks * sizeof(float));
if (status != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: "
<< __FILE__
<< ":"
<< __LINE__
<< std::endl;
std::cerr << cudaGetErrorString(status) << std::endl;
}
assert((status == cudaSuccess));
//kernel_spike_generation<<<grid, block_size >>>(
kernel_spike_generation<<<grid_size, block_size >>>(
h_init_ptr,
h_pointer,
h_dim_c0,
h_dim_c1,
h_dim_c2,
h_dim,
weights_pointer,
weights_dim_c0,
input_pointer,
input_dim_c0,
input_dim_c1,
input_dim_c2,
epsilon_xy_pointer,
epsilon_xy_dim_c0,
epsilon_xy_dim_c1,
epsilon_t_pointer,
number_of_spikes,
forgetting_offset,
forgetting_offset_local,
dim_x,
dim_y,
(dim_x * dim_y),
//number_of_pattern
max_threadable_tasks,
temp_memory_a,
temp_memory_b
);
status = cudaDeviceSynchronize();
if (status != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: "
<< __FILE__
<< ":"
<< __LINE__
<< std::endl;
std::cerr << cudaGetErrorString(status) << std::endl;
}
assert((status == cudaSuccess));
status = cudaFree(temp_memory_a);
if (status != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: "
<< __FILE__
<< ":"
<< __LINE__
<< std::endl;
std::cerr << cudaGetErrorString(status) << std::endl;
}
assert((status == cudaSuccess));
status = cudaFree(temp_memory_b);
if (status != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: "
<< __FILE__
<< ":"
<< __LINE__
<< std::endl;
std::cerr << cudaGetErrorString(status) << std::endl;
}
assert((status == cudaSuccess));
return;
};
void HDynamicCNNGPU::gpu_occupancy_export(
size_t dim_x,
size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1)
{
return;
};
void HDynamicCNNGPU::gpu_occupancy_import(
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1
)
{
return;
};

View file

@ -0,0 +1,84 @@
#ifndef HDYNAMICCNNGPU
#define HDYNAMICCNNGPU
#include <unistd.h>
#include <cctype>
#include <iostream>
class HDynamicCNNGPU
{
public:
HDynamicCNNGPU();
~HDynamicCNNGPU();
void entrypoint(
int64_t h_pointer_addr,
int64_t h_dim_0,
int64_t h_dim_1,
int64_t h_dim_2,
int64_t h_dim_3,
int64_t epsilon_xy_pointer_addr,
int64_t epsilon_xy_dim_0,
int64_t epsilon_xy_dim_1,
int64_t epsilon_xy_dim_2,
int64_t epsilon_t_pointer_addr,
int64_t epsilon_t_dim_0,
int64_t weights_pointer_addr,
int64_t weights_dim_0,
int64_t weights_dim_1,
int64_t input_pointer_addr,
int64_t input_dim_0,
int64_t input_dim_1,
int64_t input_dim_2,
int64_t input_dim_3,
int64_t init_vector_pointer_addr,
int64_t init_vector_dim_0,
int64_t number_of_processes,
float forgetting_offset,
int64_t gpu_tuning_factor);
void gpu_occupancy_export(
size_t dim_x,
size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1);
void gpu_occupancy_import(
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1);
private:
void gpu_update(
float* h_init_ptr,
float* h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer,
float* weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
size_t number_of_spikes,
size_t dim_x,
size_t dim_y,
float forgetting_offset,
float forgetting_offset_local,
size_t number_of_pattern,
size_t gpu_tuning_factor);
};
#endif /* HDYNAMICCNNGPU */

View file

@ -0,0 +1,33 @@
include ../.env
export
name = HDynamicCNN
type = GPU
PYPOSTFIX := $(shell $(PYBIN)python3-config --extension-suffix)
PYBIND11INCLUDE := $(shell $(PYBIN)python3 -m pybind11 --includes)
PARAMETERS_O = $(PARAMETERS_O_GPU) $(PYBIND11INCLUDE)
PARAMETERS_Linker = $(PARAMETERS_Linker_GPU)
so_file = Py$(name)$(type)$(PYPOSTFIX)
pyi_file = Py$(name)$(type).pyi
all: ../$(so_file)
$(O_DIRS)$(name)$(type).o: $(name)$(type).h $(name)$(type).cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c $(name)$(type).cu -o $(O_DIRS)$(name)$(type).o
$(O_DIRS)Py$(name)$(type).o: $(name)$(type).h Py$(name)$(type).cpp
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c Py$(name)$(type).cpp -o $(O_DIRS)Py$(name)$(type).o
../$(so_file): $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
$(NVCC) $(PARAMETERS_Linker) -o ../$(so_file) $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
#######################
clean:
rm -rf $(O_DIRS)
rm -f ../$(so_file)
rm -f ../$(pyi_file)

View file

@ -0,0 +1,18 @@
#include <pybind11/pybind11.h>
#include "HDynamicCNNGPU.h"
namespace py = pybind11;
PYBIND11_MODULE(PyHDynamicCNNGPU, m)
{
m.doc() = "HDynamicCNNGPU Module";
py::class_<HDynamicCNNGPU>(m, "HDynamicCNNGPU")
.def(py::init<>())
.def("gpu_occupancy_export",
&HDynamicCNNGPU::gpu_occupancy_export)
.def("gpu_occupancy_import",
&HDynamicCNNGPU::gpu_occupancy_import)
.def("update",
&HDynamicCNNGPU::entrypoint);
}

View file

@ -0,0 +1,727 @@
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <chrono>
#include <algorithm>
#include <cassert>
#include <iostream>
#include "HDynamicCNNGPU.h"
#include "kernel_phxy_fill_with_h.h"
#include "kernel_phxy_fill_with_spike_selected_w.h"
#include "kernel_phxy_one_over_sum_into_pxy.h"
#include "kernel_phxy_plus_phxy.h"
#include "kernel_phxy_plus_pxy.h"
#include "kernel_phxy_times_phxy_equals_phxy.h"
#include "kernel_phxy_times_pxy.h"
#include "kernel_pxy_plus_v.h"
#include "kernel_pxy_reciprocal.h"
#include "kernel_pxy_set_to_v.h"
#include "kernel_pxy_time_pxy.h"
#include "kernel_pxy_times_spike_selected_sxy.h"
#include "kernel_pxy_times_v.h"
HDynamicCNNGPU::HDynamicCNNGPU()
{
};
HDynamicCNNGPU::~HDynamicCNNGPU()
{
};
void HDynamicCNNGPU::entrypoint(
int64_t h_pointer_addr,
int64_t h_dim_0,
int64_t h_dim_1,
int64_t h_dim_2,
int64_t h_dim_3,
int64_t epsilon_xy_pointer_addr,
int64_t epsilon_xy_dim_0,
int64_t epsilon_xy_dim_1,
int64_t epsilon_xy_dim_2,
int64_t epsilon_t_pointer_addr,
int64_t epsilon_t_dim_0,
int64_t weights_pointer_addr,
int64_t weights_dim_0,
int64_t weights_dim_1,
int64_t input_pointer_addr,
int64_t input_dim_0,
int64_t input_dim_1,
int64_t input_dim_2,
int64_t input_dim_3,
int64_t init_vector_pointer_addr,
int64_t init_vector_dim_0,
int64_t number_of_processes,
float forgetting_offset,
int64_t gpu_tuning_factor
)
{
std::cout << "Hello\n";
size_t number_of_pattern = input_dim_0;
size_t h_dim = init_vector_dim_0;
float* h_init_ptr = (float*)init_vector_pointer_addr;
assert((h_init_ptr != nullptr));
assert((h_dim > 0));
float* h_pointer = (float*)h_pointer_addr;
assert((h_pointer != nullptr));
assert((h_dim_0 > 0));
assert((h_dim_1 > 0));
assert((h_dim_2 > 0));
assert((h_dim_3 > 0));
size_t h_dim_c0 = h_dim_1 * h_dim_2 * h_dim_3;
size_t h_dim_c1 = h_dim_2 * h_dim_3;
size_t h_dim_c2 = h_dim_3;
float* epsilon_xy_pointer = nullptr;
size_t epsilon_xy_dim_c0 = 0;
size_t epsilon_xy_dim_c1 = 0;
if (epsilon_xy_pointer_addr != 0)
{
epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
assert((epsilon_xy_pointer != nullptr));
assert((epsilon_xy_dim_0 > 0));
assert((epsilon_xy_dim_1 > 0));
assert((epsilon_xy_dim_2 > 0));
epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
epsilon_xy_dim_c1 = epsilon_xy_dim_2;
}
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
assert((epsilon_t_pointer != nullptr));
assert((epsilon_t_dim_0 > 0));
float* weights_pointer = (float*)weights_pointer_addr;
assert((weights_pointer != nullptr));
assert((weights_dim_0 > 0));
assert((weights_dim_1 > 0));
size_t weights_dim_c0 = weights_dim_1;
int64_t* input_pointer = (int64_t*)input_pointer_addr;
assert((input_pointer != nullptr));
assert((input_dim_0 > 0));
assert((input_dim_1 > 0));
assert((input_dim_2 > 0));
assert((input_dim_3 > 0));
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
size_t input_dim_c1 = input_dim_2 * input_dim_3;
size_t input_dim_c2 = input_dim_3;
assert((h_dim == weights_dim_1));
size_t number_of_spikes = input_dim_1;
size_t dim_x = input_dim_2;
size_t dim_y = input_dim_3;
float forgetting_offset_local = forgetting_offset / static_cast<float>(h_dim);
// --------------------
assert((number_of_processes <= 0));
gpu_update(h_init_ptr, h_pointer, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
epsilon_xy_pointer, epsilon_xy_dim_c0, epsilon_xy_dim_c1,
epsilon_t_pointer, weights_pointer, weights_dim_c0,
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
number_of_spikes, dim_x, dim_y, forgetting_offset,
forgetting_offset_local, number_of_pattern, gpu_tuning_factor);
return;
};
void HDynamicCNNGPU::gpu_occupancy_measure(
size_t dim_x,
size_t dim_y,
size_t number_of_pattern,
size_t h_dim)
{
grid_and_thread_calculated = false;
assert((dim_x < 65535));
assert((dim_y < 65535));
grid_and_thread_settings.resize(14);
occupancy_kernel_phxy_plus_phxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY], display_debug);
occupancy_kernel_pxy_plus_v(dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V],
display_debug);
occupancy_kernel_pxy_times_v(dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V],
display_debug);
occupancy_kernel_phxy_fill_with_h(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H], display_debug);
occupancy_kernel_phxy_plus_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY], display_debug);
occupancy_kernel_pxy_reciprocal(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL], display_debug);
occupancy_kernel_phxy_fill_with_spike_selected_w(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W],
display_debug);
occupancy_kernel_phxy_times_phxy_equals_phxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY],
display_debug);
occupancy_kernel_pxy_set_to_v(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V], display_debug);
occupancy_kernel_phxy_one_over_sum_into_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY],
display_debug);
occupancy_kernel_phxy_times_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY], display_debug);
occupancy_kernel_pxy_time_pxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY], display_debug);
// occupancy_kernel_approximation_pure_multiplication(
// dim_x, dim_y, number_of_pattern, h_dim,
// grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION],
// display_debug);
occupancy_kernel_pxy_times_spike_selected_sxy(
dim_x, dim_y, number_of_pattern, h_dim,
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY],
display_debug);
grid_and_thread_calculated = true;
return;
};
void HDynamicCNNGPU::gpu_occupancy_export(
size_t dim_x,
size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1)
{
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS));
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
assert((grid_and_thread_calculated == true));
assert((setting_dim_0 == grid_and_thread_settings.size()));
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++)
{
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++)
{
setting_memory[counter_0 * setting_dim_1 + counter_1] =
grid_and_thread_settings[counter_0][counter_1];
}
}
};
void HDynamicCNNGPU::gpu_occupancy_import(
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1)
{
grid_and_thread_calculated = false;
int64_t* setting_memory = (int64_t*)setting_memory_addr;
assert((setting_memory != nullptr));
assert((setting_dim_1 == H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS));
assert((setting_dim_0 == H_DYNAMIC_NUMBER_OF_KERNELS));
grid_and_thread_settings.resize(H_DYNAMIC_NUMBER_OF_KERNELS);
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++)
{
grid_and_thread_settings[counter_0].resize(
H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS);
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++)
{
grid_and_thread_settings[counter_0][counter_1] =
setting_memory[counter_0 * setting_dim_1 + counter_1];
}
}
grid_and_thread_calculated = true;
};
void HDynamicCNNGPU::gpu_update(
float* h_init_ptr,
float* h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer,
float* weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
size_t number_of_spikes,
size_t dim_x,
size_t dim_y,
float forgetting_offset,
float forgetting_offset_local,
size_t number_of_pattern,
size_t gpu_tuning_factor)
{
std::cout << "0\n";
if (grid_and_thread_calculated == false)
{
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
}
assert((grid_and_thread_calculated == true));
cudaError_t status;
size_t h_sum_dim_c0 = dim_x * dim_y;
size_t h_sum_dim_c1 = dim_y;
size_t phxy_block_dim_c0 = h_dim * dim_x * dim_y;
size_t phxy_block_dim_c1 = dim_x * dim_y;
size_t phxy_block_dim_c2 = dim_y;
size_t pxy_block_dim_c0 = dim_x * dim_y;
size_t pxy_block_dim_c1 = dim_y;
std::cout << "1\n";
float* w_memory = nullptr;
status = cudaMalloc((void**)&w_memory, number_of_pattern * h_dim * dim_x *
dim_y * sizeof(float));
assert((status == cudaSuccess));
std::cout << "2\n";
float* h_temp_memory = nullptr;
status =
cudaMalloc((void**)&h_temp_memory,
number_of_pattern * h_dim * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
std::cout << "3\n";
float* h_sum_memory = nullptr;
status = cudaMalloc((void**)&h_sum_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
std::cout << "4\n";
float* epsilon_subsegment_memory = nullptr;
status = cudaMalloc((void**)&epsilon_subsegment_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
std::cout << "5\n";
float* epsilon_scale_memory = nullptr;
status = cudaMalloc((void**)&epsilon_scale_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
std::cout << "6\n";
float* forget_memory = nullptr;
if (forgetting_offset > 0.0)
{
status = cudaMalloc((void**)&forget_memory,
number_of_pattern * dim_x * dim_y * sizeof(float));
assert((status == cudaSuccess));
}
// ---
std::cout << "A\n";
// Initialize h
kernel_phxy_fill_with_h<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][0],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][1],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][3],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][4],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][5])>>>(
h_init_ptr, h_pointer, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
phxy_block_dim_c0, phxy_block_dim_c1, phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "B\n";
// Set epsilon memory scale to 1.0
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
epsilon_scale_memory, 1.0,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "C\n";
for (size_t counter_spike = 0; counter_spike < number_of_spikes;
counter_spike++)
{
// Get epsilon_t from gpu memory
float epsilon_t;
status = cudaMemcpy(&epsilon_t, &epsilon_t_pointer[counter_spike],
sizeof(float), cudaMemcpyDeviceToHost);
assert((status == cudaSuccess));
// Set epsilon memory subsegment to epsilon(t)
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
epsilon_subsegment_memory, epsilon_t,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "D\n";
if (forget_memory != nullptr)
{
// Set forget memory subsegment to forgetting_offset_local
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
forget_memory, forgetting_offset_local,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
}
std::cout << "E\n";
// if (*spike >= 0) {
// epsilon_subsegment = *epsilon_xy_pointer[*spike *
// epsilon_xy_dim_c0]
if (epsilon_xy_dim_c0 != 0)
{
kernel_pxy_times_spike_selected_sxy<<<
dim3(
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY]
[2]),
dim3(
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY]
[5])>>>(
epsilon_subsegment_memory, epsilon_xy_pointer, input_pointer,
counter_spike, input_dim_c0, input_dim_c1, input_dim_c2,
epsilon_xy_dim_c0, epsilon_xy_dim_c1, epsilon_xy_dim_c0,
epsilon_xy_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1,
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
}
std::cout << "F\n";
// Get the weight vectors according the spikes
kernel_phxy_fill_with_spike_selected_w<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[0],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[1],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[3],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[4],
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
[5])>>>(
w_memory, weights_pointer, input_pointer, counter_spike, weights_dim_c0,
input_dim_c0, input_dim_c1, input_dim_c2, h_dim_c0, h_dim_c1, h_dim_c2,
h_dim, phxy_block_dim_c0, phxy_block_dim_c1, phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "G\n";
// h_temp = h * w
kernel_phxy_times_phxy_equals_phxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[0],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[1],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[3],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[4],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
[5])>>>(
h_pointer, w_memory, h_temp_memory,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "H\n";
// 1 / sum h_temp
kernel_phxy_one_over_sum_into_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY]
[5])>>>(
h_temp_memory, h_sum_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1,
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "I\n";
// epsilon_scale / sum h_temp
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
h_sum_memory, epsilon_scale_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "J\n";
// epsilon_subsegment * epsilon_scale / sum h_temp
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
h_sum_memory, epsilon_subsegment_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "K\n";
// epsilon_scale * forget_memory which contains forgetting_offset_local
if (forget_memory != nullptr)
{
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
forget_memory, epsilon_scale_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
}
std::cout << "L\n";
// delta_forget = epsilon_subsegment * epsilon_scale * forget_memory
if (forget_memory != nullptr)
{
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
forget_memory, epsilon_subsegment_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
}
std::cout << "M\n";
// delta_h = h_temp_memory * epsilon_subsegment * epsilon_scale / sum h
kernel_phxy_times_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][5])>>>(
h_temp_memory, h_sum_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "N\n";
// h + delta_h
kernel_phxy_plus_phxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][5])>>>(
h_pointer, h_temp_memory,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "O\n";
// h + delta_h + delta_forget
kernel_phxy_plus_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][5])>>>(
h_pointer, forget_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "P\n";
kernel_pxy_times_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][5])>>>(
epsilon_subsegment_memory, (1.0 + forgetting_offset),
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "Q\n";
kernel_pxy_plus_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][5])>>>(
epsilon_subsegment_memory, 1.0,
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "R\n";
// epsilon_scale * epsilon_subsegment
kernel_pxy_time_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
epsilon_scale_memory, epsilon_subsegment_memory,
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
if (((counter_spike > 0) && (counter_spike % 5000 == 0)) ||
(counter_spike + 1 == number_of_spikes))
{
std::cout << "S\n";
kernel_pxy_reciprocal<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][0],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][1],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][3],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][4],
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][5])>>>(
epsilon_scale_memory,
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "T\n";
kernel_phxy_times_pxy<<<
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][0],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][1],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][3],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][4],
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][5])>>>(
h_pointer, epsilon_scale_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
phxy_block_dim_c2,
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
std::cout << "U\n";
// Set epsilon memory scale to 1.0
kernel_pxy_set_to_v<<<
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
epsilon_scale_memory, 1.0,
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
}
}
std::cout << "V\n";
// ------------
status = cudaFree(w_memory);
assert((status == cudaSuccess));
status = cudaFree(h_temp_memory);
assert((status == cudaSuccess));
status = cudaFree(h_sum_memory);
assert((status == cudaSuccess));
status = cudaFree(epsilon_subsegment_memory);
assert((status == cudaSuccess));
status = cudaFree(epsilon_scale_memory);
assert((status == cudaSuccess));
if (forget_memory != nullptr)
{
status = cudaFree(forget_memory);
assert((status == cudaSuccess));
}
return;
};

View file

@ -0,0 +1,113 @@
#ifndef HDYNAMICCNNGPU
#define HDYNAMICCNNGPU
#include <cuda.h>
#include <unistd.h>
#include <cctype>
#include <iostream>
#include <vector>
#define ID_KERNEL_PHXY_PLUS_PHXY 0
#define ID_KERNEL_PXY_PLUS_V 1
#define ID_KERNEL_PXY_TIMES_V 2
#define ID_KERNEL_PHXY_FILL_WITH_H 3
#define ID_KERNEL_PHXY_PLUS_PXY 4
#define ID_KERNEL_PXY_RECIPROCAL 5
#define ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W 6
#define ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY 7
#define ID_KERNEL_PXY_SET_TO_V 8
#define ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY 9
#define ID_KERNEL_PHXY_TIMES_PXY 10
#define ID_KERNEL_PXY_TIME_PXY 11
#define ID_KERNEL_APPROXIMATION_MULTIPLICATION 12
#define ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY 13
#define H_DYNAMIC_NUMBER_OF_KERNELS 14
#define H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS 7
class HDynamicCNNGPU
{
public:
HDynamicCNNGPU();
~HDynamicCNNGPU();
void entrypoint(
int64_t h_pointer_addr,
int64_t h_dim_0,
int64_t h_dim_1,
int64_t h_dim_2,
int64_t h_dim_3,
int64_t epsilon_xy_pointer_addr,
int64_t epsilon_xy_dim_0,
int64_t epsilon_xy_dim_1,
int64_t epsilon_xy_dim_2,
int64_t epsilon_t_pointer_addr,
int64_t epsilon_t_dim_0,
int64_t weights_pointer_addr,
int64_t weights_dim_0,
int64_t weights_dim_1,
int64_t input_pointer_addr,
int64_t input_dim_0,
int64_t input_dim_1,
int64_t input_dim_2,
int64_t input_dim_3,
int64_t init_vector_pointer_addr,
int64_t init_vector_dim_0,
int64_t number_of_processes,
float forgetting_offset,
int64_t gpu_tuning_factor
);
void gpu_occupancy_export(
size_t dim_x,
size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1);
void gpu_occupancy_import(
int64_t setting_memory_addr,
size_t setting_dim_0,
size_t setting_dim_1);
private:
void gpu_update(
float* h_init_ptr,
float* h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer,
float* weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
size_t number_of_spikes,
size_t dim_x, size_t dim_y,
float forgetting_offset,
float forgetting_offset_local,
size_t number_of_pattern,
size_t gpu_tuning_factor);
void gpu_occupancy_measure(
size_t dim_x,
size_t dim_y,
size_t number_of_pattern,
size_t h_dim);
bool grid_and_thread_calculated = false;
std::vector<std::vector<size_t>> grid_and_thread_settings;
bool display_debug = false;
};
#endif /* HDYNAMICCNNGPU */

View file

@ -0,0 +1,153 @@
include ../.env
export
name = HDynamicCNN
type = GPU
PYPOSTFIX := $(shell $(PYBIN)python3-config --extension-suffix)
PYBIND11INCLUDE := $(shell $(PYBIN)python3 -m pybind11 --includes)
PARAMETERS_O = $(PARAMETERS_O_GPU) $(PYBIND11INCLUDE)
PARAMETERS_Linker = $(PARAMETERS_Linker_GPU)
so_file = Py$(name)$(type)$(PYPOSTFIX)
pyi_file = Py$(name)$(type).pyi
all: ../$(so_file)
$(O_DIRS)$(name)$(type).o: \
$(name)$(type).h \
$(name)$(type).cu \
kernel_helper_functions.h \
kernel_phxy_plus_pxy.h \
kernel_pxy_set_to_v.h \
kernel_phxy_fill_with_h.h \
kernel_phxy_times_phxy_equals_phxy.h \
kernel_pxy_time_pxy.h \
kernel_phxy_fill_with_spike_selected_w.h \
kernel_phxy_times_pxy.h \
kernel_pxy_times_spike_selected_sxy.h \
kernel_phxy_one_over_sum_into_pxy.h \
kernel_pxy_plus_v.h \
kernel_pxy_times_v.h \
kernel_phxy_plus_phxy.h \
kernel_pxy_reciprocal.h
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c $(name)$(type).cu -o $(O_DIRS)$(name)$(type).o
$(O_DIRS)Py$(name)$(type).o: $(name)$(type).h Py$(name)$(type).cpp
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c Py$(name)$(type).cpp -o $(O_DIRS)Py$(name)$(type).o
../$(so_file): \
$(O_DIRS)$(name)$(type).o \
$(O_DIRS)Py$(name)$(type).o \
$(O_DIRS)kernel_helper_functions.o \
$(O_DIRS)kernel_phxy_plus_pxy.o \
$(O_DIRS)kernel_pxy_set_to_v.o \
$(O_DIRS)kernel_phxy_fill_with_h.o \
$(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o \
$(O_DIRS)kernel_pxy_time_pxy.o \
$(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o \
$(O_DIRS)kernel_phxy_times_pxy.o \
$(O_DIRS)kernel_pxy_times_spike_selected_sxy.o \
$(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o \
$(O_DIRS)kernel_pxy_plus_v.o \
$(O_DIRS)kernel_pxy_times_v.o \
$(O_DIRS)kernel_phxy_plus_phxy.o \
$(O_DIRS)kernel_pxy_reciprocal.o
$(NVCC) $(PARAMETERS_Linker) -o ../$(so_file) \
$(O_DIRS)$(name)$(type).o \
$(O_DIRS)Py$(name)$(type).o \
$(O_DIRS)kernel_helper_functions.o \
$(O_DIRS)kernel_phxy_plus_pxy.o \
$(O_DIRS)kernel_pxy_set_to_v.o \
$(O_DIRS)kernel_phxy_fill_with_h.o \
$(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o \
$(O_DIRS)kernel_pxy_time_pxy.o \
$(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o \
$(O_DIRS)kernel_phxy_times_pxy.o \
$(O_DIRS)kernel_pxy_times_spike_selected_sxy.o \
$(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o \
$(O_DIRS)kernel_pxy_plus_v.o \
$(O_DIRS)kernel_pxy_times_v.o \
$(O_DIRS)kernel_phxy_plus_phxy.o \
$(O_DIRS)kernel_pxy_reciprocal.o
$(O_DIRS)kernel_helper_functions.o: kernel_helper_functions.h kernel_helper_functions.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_helper_functions.cu -o $(O_DIRS)kernel_helper_functions.o
$(O_DIRS)kernel_phxy_plus_pxy.o: kernel_helper_functions.h \
kernel_phxy_plus_pxy.h kernel_phxy_plus_pxy.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_plus_pxy.cu -o $(O_DIRS)kernel_phxy_plus_pxy.o
$(O_DIRS)kernel_pxy_set_to_v.o: kernel_helper_functions.h \
kernel_pxy_set_to_v.h kernel_pxy_set_to_v.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_set_to_v.cu -o $(O_DIRS)kernel_pxy_set_to_v.o
$(O_DIRS)kernel_phxy_fill_with_h.o: kernel_helper_functions.h \
kernel_phxy_fill_with_h.h kernel_phxy_fill_with_h.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_fill_with_h.cu -o $(O_DIRS)kernel_phxy_fill_with_h.o
$(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o: kernel_helper_functions.h \
kernel_phxy_times_phxy_equals_phxy.h kernel_phxy_times_phxy_equals_phxy.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_times_phxy_equals_phxy.cu -o $(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o
$(O_DIRS)kernel_pxy_time_pxy.o: kernel_helper_functions.h \
kernel_pxy_time_pxy.h kernel_pxy_time_pxy.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_time_pxy.cu -o $(O_DIRS)kernel_pxy_time_pxy.o
$(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o: kernel_helper_functions.h \
kernel_phxy_fill_with_spike_selected_w.h kernel_phxy_fill_with_spike_selected_w.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_fill_with_spike_selected_w.cu -o $(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o
$(O_DIRS)kernel_phxy_times_pxy.o: kernel_helper_functions.h \
kernel_phxy_times_pxy.h kernel_phxy_times_pxy.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_times_pxy.cu -o $(O_DIRS)kernel_phxy_times_pxy.o
$(O_DIRS)kernel_pxy_times_spike_selected_sxy.o: kernel_helper_functions.h \
kernel_pxy_times_spike_selected_sxy.h kernel_pxy_times_spike_selected_sxy.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_times_spike_selected_sxy.cu -o $(O_DIRS)kernel_pxy_times_spike_selected_sxy.o
$(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o: kernel_helper_functions.h \
kernel_phxy_one_over_sum_into_pxy.h kernel_phxy_one_over_sum_into_pxy.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_one_over_sum_into_pxy.cu -o $(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o
$(O_DIRS)kernel_pxy_plus_v.o: kernel_helper_functions.h \
kernel_pxy_plus_v.h kernel_pxy_plus_v.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_plus_v.cu -o $(O_DIRS)kernel_pxy_plus_v.o
$(O_DIRS)kernel_pxy_times_v.o: kernel_helper_functions.h \
kernel_pxy_times_v.h kernel_pxy_times_v.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_times_v.cu -o $(O_DIRS)kernel_pxy_times_v.o
$(O_DIRS)kernel_phxy_plus_phxy.o: kernel_helper_functions.h \
kernel_phxy_plus_phxy.h kernel_phxy_plus_phxy.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_plus_phxy.cu -o $(O_DIRS)kernel_phxy_plus_phxy.o
$(O_DIRS)kernel_pxy_reciprocal.o: kernel_helper_functions.h \
kernel_pxy_reciprocal.h kernel_pxy_reciprocal.cu
mkdir -p $(O_DIRS)
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_reciprocal.cu -o $(O_DIRS)kernel_pxy_reciprocal.o
#######################
clean:
rm -rf $(O_DIRS)
rm -f ../$(so_file)
rm -f ../$(pyi_file)

View file

@ -0,0 +1,18 @@
#include <pybind11/pybind11.h>
#include "HDynamicCNNGPU.h"
namespace py = pybind11;
PYBIND11_MODULE(PyHDynamicCNNGPU, m)
{
m.doc() = "HDynamicCNNManyIP Module";
py::class_<HDynamicCNNGPU>(m, "HDynamicCNNGPU")
.def(py::init<>())
.def("gpu_occupancy_export",
&HDynamicCNNGPU::gpu_occupancy_export)
.def("gpu_occupancy_import",
&HDynamicCNNGPU::gpu_occupancy_import)
.def("update",
&HDynamicCNNGPU::entrypoint);
}

View file

@ -0,0 +1,17 @@
#include <iostream>
#include "kernel_helper_functions.h"
void kernel_debug_plot(std::vector<size_t> output, bool display_debug) {
if (display_debug == true) {
std::cout << "grid x: " << output[0] << std::endl;
std::cout << "grid y: " << output[1] << std::endl;
std::cout << "grid z: " << output[2] << std::endl;
std::cout << "thread block x: " << output[3] << std::endl;
std::cout << "thread block y: " << output[4] << std::endl;
std::cout << "thread block z: " << output[5] << std::endl;
std::cout << "max_idx: " << output[6] << std::endl << std::endl;
}
return;
};

View file

@ -0,0 +1,7 @@
#ifndef KERNEL_HELPER_FUNCTIONS
#define KERNEL_HELPER_FUNCTIONS
#include <vector>
void kernel_debug_plot(std::vector<size_t> output, bool display_debug);
#endif /* KERNEL_HELPER_FUNCTIONS */

View file

@ -0,0 +1,64 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_fill_with_h.h"
__global__ void kernel_phxy_fill_with_h(float* __restrict__ h_memory,
float* __restrict__ phxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t block_dim_c0,
size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
position_x * phxy_dim_c2 + position_y] = h_memory[idx_h];
}
};
void occupancy_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_fill_with_h, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_fill_with_h:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,18 @@
#ifndef KERNEL_PHXY_FILL_WITH_H
#define KERNEL_PHXY_FILL_WITH_H
#include <vector>
__global__ void kernel_phxy_fill_with_h(float* __restrict__ h_memory,
float* __restrict__ phxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t block_dim_c0,
size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_FILL_WITH_H */

View file

@ -0,0 +1,73 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_fill_with_spike_selected_w.h"
__global__ void kernel_phxy_fill_with_spike_selected_w(
float* __restrict__ phxy_memory, float* __restrict__ weights_memory,
int64_t* __restrict__ spike_memory, size_t spike_time,
size_t weights_dim_c0, size_t spike_dim_c0, size_t spike_dim_c1,
size_t spike_dim_c2, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim, size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
int64_t* spike = spike_memory + pattern_id * spike_dim_c0 +
spike_time * spike_dim_c1 + position_x * spike_dim_c2 +
position_y;
if (*spike >= 0) {
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
position_x * phxy_dim_c2 + position_y] =
weights_memory[*spike * weights_dim_c0 + idx_h];
} else {
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
position_x * phxy_dim_c2 + position_y] = 0.0;
}
}
};
void occupancy_kernel_phxy_fill_with_spike_selected_w(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output, bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_phxy_fill_with_spike_selected_w, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_fill_with_spike_selected_w:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,17 @@
#ifndef KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W
#define KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W
#include <vector>
__global__ void kernel_phxy_fill_with_spike_selected_w(
float* __restrict__ phxy_memory, float* __restrict__ weights_memory,
int64_t* __restrict__ spike_memory, size_t spike_time,
size_t weights_dim_c0, size_t spike_dim_c0, size_t spike_dim_c1,
size_t spike_dim_c2, size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim, size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_fill_with_spike_selected_w(
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output, bool display_debug);
#endif /* KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W */

View file

@ -0,0 +1,74 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_one_over_sum_into_pxy.h"
__global__ void kernel_phxy_one_over_sum_into_pxy(
float* __restrict__ phxy_memory, float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1, size_t block_dim_c0,
size_t block_dim_c1, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t position_x = idx / block_dim_c1;
idx -= position_x * block_dim_c1;
size_t position_y = idx;
size_t offset_phxy_temp =
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
size_t offset_pxy_sum =
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
float temp = 0.0;
for (size_t idx_h = 0; idx_h < h_dim; idx_h++) {
temp += phxy_memory[offset_phxy_temp + idx_h * phxy_dim_c1];
}
if (temp > 1E-10) {
pxy_memory[offset_pxy_sum] = 1.0 / temp;
} else {
pxy_memory[offset_pxy_sum] = 0.0;
}
}
};
void occupancy_kernel_phxy_one_over_sum_into_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_phxy_one_over_sum_into_pxy, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_one_over_sum_into_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,17 @@
#ifndef KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY
#define KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY
#include <vector>
__global__ void kernel_phxy_one_over_sum_into_pxy(
float* __restrict__ phxy_memory, float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1, size_t block_dim_c0,
size_t block_dim_c1, size_t max_idx);
void occupancy_kernel_phxy_one_over_sum_into_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY */

View file

@ -0,0 +1,51 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_plus_phxy.h"
__global__ void kernel_phxy_plus_phxy(float* __restrict__ phxy_memory_a,
float* __restrict__ phxy_memory_b,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
phxy_memory_a[idx] += phxy_memory_b[idx];
}
};
void occupancy_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_plus_phxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_plus_phxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,12 @@
#ifndef KERNEL_PHXY_PLUS_PHXY
#define KERNEL_PHXY_PLUS_PHXY
#include <vector>
__global__ void kernel_phxy_plus_phxy(float* __restrict__ phxy_memory_a,
float* __restrict__ phxy_memory_b,
size_t max_idx);
void occupancy_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_PLUS_PHXY */

View file

@ -0,0 +1,70 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_plus_pxy.h"
__global__ void kernel_phxy_plus_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
size_t offset_h_temp =
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
size_t offset_h_sum =
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
phxy_memory[offset_h_temp + idx_h * phxy_dim_c1] +=
pxy_memory[offset_h_sum];
}
};
void occupancy_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_plus_pxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_plus_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,16 @@
#ifndef KERNEL_PHXY_PLUS_PXY
#define KERNEL_PHXY_PLUS_PXY
#include <vector>
__global__ void kernel_phxy_plus_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_PLUS_PXY */

View file

@ -0,0 +1,53 @@
#include <cassert>
#include <iostream>
#include <vector>
#include "kernel_helper_functions.h"
#include "kernel_phxy_times_phxy_equals_phxy.h"
__global__ void kernel_phxy_times_phxy_equals_phxy(
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
float* __restrict__ phxy_memory_out, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
phxy_memory_out[idx] = phxy_memory_a[idx] * phxy_memory_b[idx];
}
};
void occupancy_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_phxy_times_phxy_equals_phxy, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_times_phxy_equals_phxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,15 @@
#ifndef KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY
#define KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY
#include <vector>
__global__ void kernel_phxy_times_phxy_equals_phxy(
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
float* __restrict__ phxy_memory_out, size_t max_idx);
void occupancy_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY */

View file

@ -0,0 +1,70 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_phxy_times_pxy.h"
__global__ void kernel_phxy_times_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t idx_h = idx / block_dim_c1;
idx -= idx_h * block_dim_c1;
size_t position_x = idx / block_dim_c2;
idx -= position_x * block_dim_c2;
size_t position_y = idx;
size_t offset_h_temp =
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
size_t offset_h_sum =
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
phxy_memory[offset_h_temp + idx_h * phxy_dim_c1] *=
pxy_memory[offset_h_sum];
}
};
void occupancy_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_phxy_times_pxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_phxy_times_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,17 @@
#ifndef KERNEL_PHXY_TIMES_PXY
#define KERNEL_PHXY_TIMES_PXY
#include <vector>
__global__ void kernel_phxy_times_pxy(float* __restrict__ phxy_memory,
float* __restrict__ pxy_memory,
size_t phxy_dim_c0, size_t phxy_dim_c1,
size_t phxy_dim_c2, size_t h_dim,
size_t pxy_dim_c0, size_t pxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1,
size_t block_dim_c2, size_t max_idx);
void occupancy_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PHXY_TIMES_PXY */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_plus_v.h"
__global__ void kernel_pxy_plus_v(float* __restrict__ pxy_memory, float value,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] += value;
}
};
void occupancy_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_plus_v, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_plus_v:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,12 @@
#ifndef KERNEL_PXY_PLUS_V
#define KERNEL_PXY_PLUS_V
#include <vector>
__global__ void kernel_pxy_plus_v(float* __restrict__ pxy_memory, float value,
size_t max_idx);
void occupancy_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_PLUS_V */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_reciprocal.h"
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] = 1.0 / pxy_memory[idx];
}
};
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_reciprocal, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_reciprocal:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,12 @@
#ifndef KERNEL_PXY_RECIPROCAL
#define KERNEL_PXY_RECIPROCAL
#include <vector>
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
size_t max_idx);
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_RECIPROCAL */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_set_to_v.h"
__global__ void kernel_pxy_set_to_v(float* __restrict__ pxy_memory, float value,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] = value;
}
};
void occupancy_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_set_to_v, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_set_to_v:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,13 @@
#ifndef KERNEL_PXY_SET_TO_V
#define KERNEL_PXY_SET_TO_V
#include <vector>
__global__ void kernel_pxy_set_to_v(float* __restrict__ pxy_memory, float value,
size_t max_idx);
void occupancy_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_SET_TO_V */

View file

@ -0,0 +1,58 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_time_pxy.h"
// a *= b
__global__ void kernel_pxy_time_pxy(float* __restrict__ pxy_memory_a,
float* __restrict__ pxy_memory_b,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory_a[idx] *= pxy_memory_b[idx];
}
};
void occupancy_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_time_pxy, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
size_t gpu_tuning_factor = 5;
if ((gpu_tuning_factor > 0) && (gpu_tuning_factor < thread_block_size)) {
thread_block_size = int(gpu_tuning_factor);
}
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_time_pxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,15 @@
#ifndef KERNEL_PXY_TIME_PXY
#define KERNEL_PXY_TIME_PXY
#include <vector>
__global__ void kernel_pxy_time_pxy(float* __restrict__ pxy_memory_a,
float* __restrict__ pxy_memory_b,
size_t max_idx);
void occupancy_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_TIME_PXY */

View file

@ -0,0 +1,73 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_times_spike_selected_sxy.h"
__global__ void kernel_pxy_times_spike_selected_sxy(
float* __restrict__ pxy_memory, float* __restrict__ sxy_memory,
int64_t* __restrict__ spike_memory, size_t spike_time, size_t spike_dim_c0,
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1, size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
size_t pattern_id = idx / block_dim_c0;
idx -= pattern_id * block_dim_c0;
size_t position_x = idx / block_dim_c1;
idx -= position_x * block_dim_c1;
size_t position_y = idx;
int64_t* spike = spike_memory + pattern_id * spike_dim_c0 +
spike_time * spike_dim_c1 + position_x * spike_dim_c2 +
position_y;
if (*spike >= 0) {
pxy_memory[pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 +
position_y] *=
sxy_memory[*spike * sxy_dim_c0 + position_x * sxy_dim_c1 +
position_y];
} else {
pxy_memory[pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 +
position_y] = 0;
}
}
};
void occupancy_kernel_pxy_times_spike_selected_sxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size,
(void*)kernel_pxy_times_spike_selected_sxy, 0, max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_times_spike_selected_sxy:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,18 @@
#ifndef KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY
#define KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY
#include <vector>
__global__ void kernel_pxy_times_spike_selected_sxy(
float* __restrict__ pxy_memory, float* __restrict__ sxy_memory,
int64_t* __restrict__ spike_memory, size_t spike_time, size_t spike_dim_c0,
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1,
size_t block_dim_c0, size_t block_dim_c1, size_t max_idx);
void occupancy_kernel_pxy_times_spike_selected_sxy(size_t dim_x, size_t dim_y,
size_t number_of_pattern,
size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY */

View file

@ -0,0 +1,50 @@
#include <cassert>
#include <iostream>
#include "kernel_helper_functions.h"
#include "kernel_pxy_times_v.h"
__global__ void kernel_pxy_times_v(float* __restrict__ pxy_memory, float value,
size_t max_idx) {
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_idx) {
pxy_memory[idx] *= value;
}
};
void occupancy_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug) {
size_t max_threadable_tasks;
cudaError_t status;
int min_grid_size;
int thread_block_size;
int grid_size;
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
status = cudaOccupancyMaxPotentialBlockSize(
&min_grid_size, &thread_block_size, (void*)kernel_pxy_times_v, 0,
max_threadable_tasks);
assert((status == cudaSuccess));
grid_size =
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
output.resize(7);
output[0] = grid_size;
output[1] = 1;
output[2] = 1;
output[3] = thread_block_size;
output[4] = 1;
output[5] = 1;
output[6] = max_threadable_tasks;
if (display_debug == true) {
std::cout << "kernel_pxy_times_v:" << std::endl;
kernel_debug_plot(output, display_debug);
}
};

View file

@ -0,0 +1,13 @@
#ifndef KERNEL_PXY_TIMES_V
#define KERNEL_PXY_TIMES_V
#include <vector>
__global__ void kernel_pxy_times_v(float* __restrict__ pxy_memory, float value,
size_t max_idx);
void occupancy_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
size_t number_of_pattern, size_t h_dim,
std::vector<size_t>& output,
bool display_debug);
#endif /* KERNEL_PXY_TIMES_V */

View file

@ -0,0 +1,14 @@
make o/kernel_helper_functions.o
make o/kernel_phxy_fill_with_h.o
make o/kernel_phxy_fill_with_spike_selected_w.o
make o/kernel_phxy_one_over_sum_into_pxy.o
make o/kernel_phxy_plus_phxy.o
make o/kernel_phxy_plus_pxy.o
make o/kernel_phxy_times_phxy_equals_phxy.o
make o/kernel_phxy_times_pxy.o
make o/kernel_pxy_plus_v.o
make o/kernel_pxy_reciprocal.o
make o/kernel_pxy_set_to_v.o
make o/kernel_pxy_time_pxy.o
make o/kernel_pxy_times_spike_selected_sxy.o
make o/kernel_pxy_times_v.o