Add files via upload
This commit is contained in:
parent
351a095d35
commit
21796aba07
54 changed files with 2735 additions and 12 deletions
|
@ -64,13 +64,20 @@ void HDynamicCNNCPU::entrypoint(
|
|||
size_t h_dim_c1 = h_dim_2 * h_dim_3;
|
||||
size_t h_dim_c2 = h_dim_3;
|
||||
|
||||
float* epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
|
||||
float* epsilon_xy_pointer = nullptr;
|
||||
size_t epsilon_xy_dim_c0 = 0;
|
||||
size_t epsilon_xy_dim_c1 = 0;
|
||||
if (epsilon_xy_pointer_addr != 0)
|
||||
{
|
||||
epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
|
||||
assert((epsilon_xy_pointer != nullptr));
|
||||
assert((epsilon_xy_dim_0 > 0));
|
||||
assert((epsilon_xy_dim_1 > 0));
|
||||
assert((epsilon_xy_dim_2 > 0));
|
||||
|
||||
size_t epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
|
||||
size_t epsilon_xy_dim_c1 = epsilon_xy_dim_2;
|
||||
epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
|
||||
epsilon_xy_dim_c1 = epsilon_xy_dim_2;
|
||||
}
|
||||
|
||||
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
|
||||
assert((epsilon_t_pointer != nullptr));
|
||||
|
@ -164,16 +171,18 @@ void HDynamicCNNCPU::update(
|
|||
{
|
||||
|
||||
float* h_ptr;
|
||||
float* epsilon_xy_ptr;
|
||||
float* epsilon_xy_ptr = nullptr;
|
||||
int64_t* input_ptr;
|
||||
|
||||
for (size_t counter_x = 0; counter_x < dim_x; counter_x++)
|
||||
{
|
||||
for (size_t counter_y = 0; counter_y < dim_y; counter_y++)
|
||||
{
|
||||
if (epsilon_xy_dim_c1 != 0)
|
||||
{
|
||||
epsilon_xy_ptr = epsilon_xy_pointer +
|
||||
counter_x * epsilon_xy_dim_c1 + counter_y;
|
||||
|
||||
}
|
||||
h_ptr = h_pointer +
|
||||
pattern_id * h_dim_c0 + counter_x * h_dim_c2 + counter_y;
|
||||
|
||||
|
@ -251,9 +260,16 @@ void HDynamicCNNCPU::update_one_ip(
|
|||
spike = input_pointer + counter_spike * input_dim_c1;
|
||||
|
||||
if (*spike >= 0)
|
||||
{
|
||||
if (epsilon_xy_dim_c0 != 0)
|
||||
{
|
||||
epsilon_subsegment =
|
||||
epsilon_xy_pointer[*spike * epsilon_xy_dim_c0] * epsilon_t_pointer[counter_spike];
|
||||
}
|
||||
else
|
||||
{
|
||||
epsilon_subsegment = epsilon_t_pointer[counter_spike];
|
||||
}
|
||||
|
||||
w_ptr = weights_pointer + *spike * weights_dim_c0;
|
||||
|
||||
|
|
542
network/h_dynamic_cnn_gpu_cpp_v1/HDynamicCNNGPU.cu
Normal file
542
network/h_dynamic_cnn_gpu_cpp_v1/HDynamicCNNGPU.cu
Normal file
|
@ -0,0 +1,542 @@
|
|||
#include "HDynamicCNNGPU.h"
|
||||
|
||||
#include <omp.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
HDynamicCNNGPU::HDynamicCNNGPU()
|
||||
{
|
||||
|
||||
};
|
||||
|
||||
HDynamicCNNGPU::~HDynamicCNNGPU()
|
||||
{
|
||||
|
||||
};
|
||||
|
||||
void HDynamicCNNGPU::entrypoint(
|
||||
int64_t h_pointer_addr,
|
||||
int64_t h_dim_0,
|
||||
int64_t h_dim_1,
|
||||
int64_t h_dim_2,
|
||||
int64_t h_dim_3,
|
||||
int64_t epsilon_xy_pointer_addr,
|
||||
int64_t epsilon_xy_dim_0,
|
||||
int64_t epsilon_xy_dim_1,
|
||||
int64_t epsilon_xy_dim_2,
|
||||
int64_t epsilon_t_pointer_addr,
|
||||
int64_t epsilon_t_dim_0,
|
||||
int64_t weights_pointer_addr,
|
||||
int64_t weights_dim_0,
|
||||
int64_t weights_dim_1,
|
||||
int64_t input_pointer_addr,
|
||||
int64_t input_dim_0,
|
||||
int64_t input_dim_1,
|
||||
int64_t input_dim_2,
|
||||
int64_t input_dim_3,
|
||||
int64_t init_vector_pointer_addr,
|
||||
int64_t init_vector_dim_0,
|
||||
int64_t number_of_processes,
|
||||
float forgetting_offset,
|
||||
int64_t gpu_tuning_factor)
|
||||
{
|
||||
|
||||
size_t number_of_pattern = input_dim_0;
|
||||
|
||||
size_t h_dim = init_vector_dim_0;
|
||||
float* h_init_ptr = (float*)init_vector_pointer_addr;
|
||||
assert((h_init_ptr != nullptr));
|
||||
assert((h_dim > 0));
|
||||
|
||||
float* h_pointer = (float*)h_pointer_addr;
|
||||
assert((h_pointer != nullptr));
|
||||
assert((h_dim_0 > 0));
|
||||
assert((h_dim_1 > 0));
|
||||
assert((h_dim_2 > 0));
|
||||
assert((h_dim_3 > 0));
|
||||
|
||||
size_t h_dim_c0 = h_dim_1 * h_dim_2 * h_dim_3;
|
||||
size_t h_dim_c1 = h_dim_2 * h_dim_3;
|
||||
size_t h_dim_c2 = h_dim_3;
|
||||
|
||||
float* epsilon_xy_pointer = nullptr;
|
||||
size_t epsilon_xy_dim_c0 = 0;
|
||||
size_t epsilon_xy_dim_c1 = 0;
|
||||
if (epsilon_xy_pointer_addr != 0)
|
||||
{
|
||||
epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
|
||||
assert((epsilon_xy_pointer != nullptr));
|
||||
assert((epsilon_xy_dim_0 > 0));
|
||||
assert((epsilon_xy_dim_1 > 0));
|
||||
assert((epsilon_xy_dim_2 > 0));
|
||||
|
||||
epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
|
||||
epsilon_xy_dim_c1 = epsilon_xy_dim_2;
|
||||
}
|
||||
|
||||
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
|
||||
assert((epsilon_t_pointer != nullptr));
|
||||
assert((epsilon_t_dim_0 > 0));
|
||||
|
||||
float* weights_pointer = (float*)weights_pointer_addr;
|
||||
assert((weights_pointer != nullptr));
|
||||
assert((weights_dim_0 > 0));
|
||||
assert((weights_dim_1 > 0));
|
||||
|
||||
size_t weights_dim_c0 = weights_dim_1;
|
||||
|
||||
int64_t* input_pointer = (int64_t*)input_pointer_addr;
|
||||
assert((input_pointer != nullptr));
|
||||
assert((input_dim_0 > 0));
|
||||
assert((input_dim_1 > 0));
|
||||
assert((input_dim_2 > 0));
|
||||
assert((input_dim_3 > 0));
|
||||
|
||||
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
|
||||
size_t input_dim_c1 = input_dim_2 * input_dim_3;
|
||||
size_t input_dim_c2 = input_dim_3;
|
||||
|
||||
assert((h_dim == weights_dim_1));
|
||||
size_t number_of_spikes = input_dim_1;
|
||||
size_t dim_x = input_dim_2;
|
||||
size_t dim_y = input_dim_3;
|
||||
|
||||
float forgetting_offset_local = forgetting_offset / static_cast<float>(h_dim);
|
||||
|
||||
// --------------------
|
||||
assert((number_of_processes <= 0));
|
||||
|
||||
gpu_update(
|
||||
h_init_ptr,
|
||||
h_pointer,
|
||||
h_dim_c0,
|
||||
h_dim_c1,
|
||||
h_dim_c2,
|
||||
h_dim,
|
||||
epsilon_xy_pointer,
|
||||
epsilon_xy_dim_c0,
|
||||
epsilon_xy_dim_c1,
|
||||
epsilon_t_pointer,
|
||||
weights_pointer,
|
||||
weights_dim_c0,
|
||||
input_pointer,
|
||||
input_dim_c0,
|
||||
input_dim_c1,
|
||||
input_dim_c2,
|
||||
number_of_spikes,
|
||||
dim_x,
|
||||
dim_y,
|
||||
forgetting_offset,
|
||||
forgetting_offset_local,
|
||||
number_of_pattern,
|
||||
gpu_tuning_factor);
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
__device__ void gpu_update_one_ip(
|
||||
float* __restrict__ h_init_ptr,
|
||||
float* __restrict__ h_pointer,
|
||||
size_t h_dim_c1,
|
||||
size_t h_dim,
|
||||
float* __restrict__ weights_pointer,
|
||||
size_t weights_dim_c0,
|
||||
int64_t* input_pointer,
|
||||
size_t input_dim_c1,
|
||||
float* __restrict__ epsilon_xy_pointer,
|
||||
size_t epsilon_xy_dim_c0,
|
||||
float* __restrict__ epsilon_t_pointer,
|
||||
size_t number_of_spikes,
|
||||
float forgetting_offset,
|
||||
float forgetting_offset_local,
|
||||
float* __restrict__ h_temp,
|
||||
float* __restrict__ h_subsegment
|
||||
)
|
||||
{
|
||||
|
||||
float h_temp_sum;
|
||||
float temp_value;
|
||||
|
||||
float epsilon_subsegment;
|
||||
float epsilon_scale = 1.0;
|
||||
|
||||
int64_t* spike;
|
||||
float* w_ptr;
|
||||
|
||||
// float* h_temp = new float[h_dim];
|
||||
// float* h_subsegment = new float[h_dim];
|
||||
|
||||
// Initialize the sub-segement
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_subsegment[counter] = h_init_ptr[counter];
|
||||
}
|
||||
|
||||
for (size_t counter_spike = 0; counter_spike < number_of_spikes; counter_spike++)
|
||||
{
|
||||
if (epsilon_scale > 1E10)
|
||||
{
|
||||
temp_value = 1.0 / epsilon_scale;
|
||||
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_subsegment[counter] *= temp_value;
|
||||
}
|
||||
|
||||
epsilon_scale = 1.0;
|
||||
}
|
||||
|
||||
spike = input_pointer + counter_spike * input_dim_c1;
|
||||
|
||||
if (*spike >= 0)
|
||||
{
|
||||
if (epsilon_xy_dim_c0 != 0)
|
||||
{
|
||||
epsilon_subsegment =
|
||||
epsilon_xy_pointer[*spike *epsilon_xy_dim_c0] * epsilon_t_pointer[counter_spike];
|
||||
}
|
||||
else
|
||||
{
|
||||
epsilon_subsegment = epsilon_t_pointer[counter_spike];
|
||||
}
|
||||
w_ptr = weights_pointer + *spike * weights_dim_c0;
|
||||
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_temp[counter] = h_subsegment[counter] * w_ptr[counter];
|
||||
}
|
||||
|
||||
h_temp_sum = 0.0;
|
||||
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_temp_sum += h_temp[counter];
|
||||
}
|
||||
|
||||
if (h_temp_sum > 1E-10)
|
||||
{
|
||||
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
|
||||
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_temp[counter] *= temp_value;
|
||||
}
|
||||
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_subsegment[counter] += h_temp[counter];
|
||||
}
|
||||
|
||||
if (forgetting_offset_local > 0.0)
|
||||
{
|
||||
temp_value =
|
||||
epsilon_scale * epsilon_subsegment * forgetting_offset_local;
|
||||
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_subsegment[counter] += temp_value;
|
||||
}
|
||||
|
||||
epsilon_scale *=
|
||||
1.0 + epsilon_subsegment * (1.0 + forgetting_offset);
|
||||
}
|
||||
else
|
||||
{
|
||||
epsilon_scale *= 1.0 + epsilon_subsegment * 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
temp_value = 1.0 / epsilon_scale;
|
||||
|
||||
for (size_t counter = 0; counter < h_dim; counter++)
|
||||
{
|
||||
h_pointer[counter * h_dim_c1] =
|
||||
h_subsegment[counter] * temp_value;
|
||||
}
|
||||
|
||||
// delete[] h_temp;
|
||||
// delete[] h_subsegment;
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
__global__ void kernel_spike_generation(
|
||||
float* __restrict__ h_init_ptr,
|
||||
float* __restrict__ h_pointer,
|
||||
size_t h_dim_c0,
|
||||
size_t h_dim_c1,
|
||||
size_t h_dim_c2,
|
||||
size_t h_dim,
|
||||
float* __restrict__ weights_pointer,
|
||||
size_t weights_dim_c0,
|
||||
int64_t* __restrict__ input_pointer,
|
||||
size_t input_dim_c0,
|
||||
size_t input_dim_c1,
|
||||
size_t input_dim_c2,
|
||||
float* __restrict__ epsilon_xy_pointer,
|
||||
size_t epsilon_xy_dim_c0,
|
||||
size_t epsilon_xy_dim_c1,
|
||||
float* __restrict__ epsilon_t_pointer,
|
||||
size_t number_of_spikes,
|
||||
float forgetting_offset,
|
||||
float forgetting_offset_local,
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
size_t dim_xy,
|
||||
size_t max_threadable_tasks,
|
||||
float* __restrict__ temp_memory_a,
|
||||
float* __restrict__ temp_memory_b
|
||||
)
|
||||
{
|
||||
|
||||
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_threadable_tasks)
|
||||
{
|
||||
float* h_ptr;
|
||||
float* epsilon_xy_ptr = nullptr;
|
||||
int64_t* input_ptr;
|
||||
|
||||
float* temp_memory_ptr_a = temp_memory_a + idx * h_dim;
|
||||
float* temp_memory_ptr_b = temp_memory_b + idx * h_dim;
|
||||
|
||||
// int pattern_id = idx;
|
||||
int pattern_id = idx / dim_xy;
|
||||
int position_xy = idx - (pattern_id * dim_xy);
|
||||
|
||||
// size_t position_x = blockIdx.y;
|
||||
// size_t position_y = blockIdx.z;
|
||||
size_t position_x = position_xy / dim_y;
|
||||
size_t position_y = position_xy - (position_x * dim_y);
|
||||
|
||||
if (epsilon_xy_dim_c1 != 0)
|
||||
{
|
||||
epsilon_xy_ptr = epsilon_xy_pointer +
|
||||
position_x * epsilon_xy_dim_c1 + position_y;
|
||||
}
|
||||
|
||||
h_ptr = h_pointer +
|
||||
pattern_id * h_dim_c0 + position_x * h_dim_c2 + position_y;
|
||||
|
||||
input_ptr = input_pointer +
|
||||
pattern_id * input_dim_c0 + position_x * input_dim_c2 + position_y;
|
||||
|
||||
gpu_update_one_ip(
|
||||
h_init_ptr,
|
||||
h_ptr,
|
||||
h_dim_c1,
|
||||
h_dim,
|
||||
weights_pointer,
|
||||
weights_dim_c0,
|
||||
input_ptr,
|
||||
input_dim_c1,
|
||||
epsilon_xy_ptr,
|
||||
epsilon_xy_dim_c0,
|
||||
epsilon_t_pointer,
|
||||
number_of_spikes,
|
||||
forgetting_offset,
|
||||
forgetting_offset_local,
|
||||
temp_memory_ptr_a,
|
||||
temp_memory_ptr_b
|
||||
);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Let's face it... We need a better way to paralelize it...
|
||||
void HDynamicCNNGPU::gpu_update(
|
||||
float* h_init_ptr,
|
||||
float* h_pointer,
|
||||
size_t h_dim_c0,
|
||||
size_t h_dim_c1,
|
||||
size_t h_dim_c2,
|
||||
size_t h_dim,
|
||||
float* epsilon_xy_pointer,
|
||||
size_t epsilon_xy_dim_c0,
|
||||
size_t epsilon_xy_dim_c1,
|
||||
float* epsilon_t_pointer,
|
||||
float* weights_pointer,
|
||||
size_t weights_dim_c0,
|
||||
int64_t* input_pointer,
|
||||
size_t input_dim_c0,
|
||||
size_t input_dim_c1,
|
||||
size_t input_dim_c2,
|
||||
size_t number_of_spikes,
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
float forgetting_offset,
|
||||
float forgetting_offset_local,
|
||||
size_t number_of_pattern,
|
||||
size_t gpu_tuning_factor)
|
||||
{
|
||||
|
||||
cudaError_t status;
|
||||
assert((dim_x < 65535));
|
||||
assert((dim_y < 65535));
|
||||
|
||||
// //////////////////////////////////////
|
||||
// Calculate the distribution on the GPU
|
||||
// //////////////////////////////////////
|
||||
|
||||
int min_grid_size;
|
||||
int block_size;
|
||||
int grid_size;
|
||||
|
||||
size_t dynamic_s_mem_size = 0;
|
||||
size_t max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=blocksize#occupancy-calculator
|
||||
status = cudaOccupancyMaxPotentialBlockSize(&min_grid_size, &block_size,
|
||||
(void*)kernel_spike_generation,
|
||||
dynamic_s_mem_size, max_threadable_tasks);
|
||||
if (status != cudaSuccess)
|
||||
{
|
||||
std::cerr << "CUDA Runtime Error at: "
|
||||
<< __FILE__
|
||||
<< ":"
|
||||
<< __LINE__
|
||||
<< std::endl;
|
||||
std::cerr << cudaGetErrorString(status) << std::endl;
|
||||
}
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
|
||||
// Maximum dimensionality of grid of thread blocks: 3
|
||||
// Maximum x -dimension of a grid of thread blocks: (2^31)-1
|
||||
// Maximum y- or z-dimension of a grid of thread blocks: 65535
|
||||
|
||||
// Reduce the automatic block size with our guess
|
||||
if ((gpu_tuning_factor > 0) && (gpu_tuning_factor < block_size))
|
||||
{
|
||||
block_size = int(gpu_tuning_factor);
|
||||
}
|
||||
// Round up according to array size
|
||||
// (I will separate x and y into other grid dimentsions soon)
|
||||
// grid_size = (number_of_pattern + block_size - 1) / block_size;
|
||||
grid_size = (max_threadable_tasks + block_size - 1) / block_size;
|
||||
|
||||
float* temp_memory_a = nullptr;
|
||||
status = cudaMalloc((void**)&temp_memory_a, h_dim * max_threadable_tasks * sizeof(float));
|
||||
if (status != cudaSuccess)
|
||||
{
|
||||
std::cerr << "CUDA Runtime Error at: "
|
||||
<< __FILE__
|
||||
<< ":"
|
||||
<< __LINE__
|
||||
<< std::endl;
|
||||
std::cerr << cudaGetErrorString(status) << std::endl;
|
||||
}
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
float* temp_memory_b = nullptr;
|
||||
status = cudaMalloc((void**)&temp_memory_b, h_dim * max_threadable_tasks * sizeof(float));
|
||||
if (status != cudaSuccess)
|
||||
{
|
||||
std::cerr << "CUDA Runtime Error at: "
|
||||
<< __FILE__
|
||||
<< ":"
|
||||
<< __LINE__
|
||||
<< std::endl;
|
||||
std::cerr << cudaGetErrorString(status) << std::endl;
|
||||
}
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
|
||||
//kernel_spike_generation<<<grid, block_size >>>(
|
||||
kernel_spike_generation<<<grid_size, block_size >>>(
|
||||
h_init_ptr,
|
||||
h_pointer,
|
||||
h_dim_c0,
|
||||
h_dim_c1,
|
||||
h_dim_c2,
|
||||
h_dim,
|
||||
weights_pointer,
|
||||
weights_dim_c0,
|
||||
input_pointer,
|
||||
input_dim_c0,
|
||||
input_dim_c1,
|
||||
input_dim_c2,
|
||||
epsilon_xy_pointer,
|
||||
epsilon_xy_dim_c0,
|
||||
epsilon_xy_dim_c1,
|
||||
epsilon_t_pointer,
|
||||
number_of_spikes,
|
||||
forgetting_offset,
|
||||
forgetting_offset_local,
|
||||
dim_x,
|
||||
dim_y,
|
||||
(dim_x * dim_y),
|
||||
//number_of_pattern
|
||||
max_threadable_tasks,
|
||||
temp_memory_a,
|
||||
temp_memory_b
|
||||
);
|
||||
|
||||
status = cudaDeviceSynchronize();
|
||||
if (status != cudaSuccess)
|
||||
{
|
||||
std::cerr << "CUDA Runtime Error at: "
|
||||
<< __FILE__
|
||||
<< ":"
|
||||
<< __LINE__
|
||||
<< std::endl;
|
||||
std::cerr << cudaGetErrorString(status) << std::endl;
|
||||
}
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
status = cudaFree(temp_memory_a);
|
||||
if (status != cudaSuccess)
|
||||
{
|
||||
std::cerr << "CUDA Runtime Error at: "
|
||||
<< __FILE__
|
||||
<< ":"
|
||||
<< __LINE__
|
||||
<< std::endl;
|
||||
std::cerr << cudaGetErrorString(status) << std::endl;
|
||||
}
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
status = cudaFree(temp_memory_b);
|
||||
if (status != cudaSuccess)
|
||||
{
|
||||
std::cerr << "CUDA Runtime Error at: "
|
||||
<< __FILE__
|
||||
<< ":"
|
||||
<< __LINE__
|
||||
<< std::endl;
|
||||
std::cerr << cudaGetErrorString(status) << std::endl;
|
||||
}
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
|
||||
void HDynamicCNNGPU::gpu_occupancy_export(
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1)
|
||||
{
|
||||
return;
|
||||
};
|
||||
|
||||
void HDynamicCNNGPU::gpu_occupancy_import(
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1
|
||||
)
|
||||
{
|
||||
return;
|
||||
};
|
84
network/h_dynamic_cnn_gpu_cpp_v1/HDynamicCNNGPU.h
Normal file
84
network/h_dynamic_cnn_gpu_cpp_v1/HDynamicCNNGPU.h
Normal file
|
@ -0,0 +1,84 @@
|
|||
#ifndef HDYNAMICCNNGPU
|
||||
#define HDYNAMICCNNGPU
|
||||
|
||||
#include <unistd.h>
|
||||
|
||||
#include <cctype>
|
||||
#include <iostream>
|
||||
|
||||
class HDynamicCNNGPU
|
||||
{
|
||||
public:
|
||||
HDynamicCNNGPU();
|
||||
~HDynamicCNNGPU();
|
||||
|
||||
void entrypoint(
|
||||
int64_t h_pointer_addr,
|
||||
int64_t h_dim_0,
|
||||
int64_t h_dim_1,
|
||||
int64_t h_dim_2,
|
||||
int64_t h_dim_3,
|
||||
int64_t epsilon_xy_pointer_addr,
|
||||
int64_t epsilon_xy_dim_0,
|
||||
int64_t epsilon_xy_dim_1,
|
||||
int64_t epsilon_xy_dim_2,
|
||||
int64_t epsilon_t_pointer_addr,
|
||||
int64_t epsilon_t_dim_0,
|
||||
int64_t weights_pointer_addr,
|
||||
int64_t weights_dim_0,
|
||||
int64_t weights_dim_1,
|
||||
int64_t input_pointer_addr,
|
||||
int64_t input_dim_0,
|
||||
int64_t input_dim_1,
|
||||
int64_t input_dim_2,
|
||||
int64_t input_dim_3,
|
||||
int64_t init_vector_pointer_addr,
|
||||
int64_t init_vector_dim_0,
|
||||
int64_t number_of_processes,
|
||||
float forgetting_offset,
|
||||
int64_t gpu_tuning_factor);
|
||||
|
||||
void gpu_occupancy_export(
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1);
|
||||
|
||||
void gpu_occupancy_import(
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1);
|
||||
|
||||
private:
|
||||
|
||||
void gpu_update(
|
||||
float* h_init_ptr,
|
||||
float* h_pointer,
|
||||
size_t h_dim_c0,
|
||||
size_t h_dim_c1,
|
||||
size_t h_dim_c2,
|
||||
size_t h_dim,
|
||||
float* epsilon_xy_pointer,
|
||||
size_t epsilon_xy_dim_c0,
|
||||
size_t epsilon_xy_dim_c1,
|
||||
float* epsilon_t_pointer,
|
||||
float* weights_pointer,
|
||||
size_t weights_dim_c0,
|
||||
int64_t* input_pointer,
|
||||
size_t input_dim_c0,
|
||||
size_t input_dim_c1,
|
||||
size_t input_dim_c2,
|
||||
size_t number_of_spikes,
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
float forgetting_offset,
|
||||
float forgetting_offset_local,
|
||||
size_t number_of_pattern,
|
||||
size_t gpu_tuning_factor);
|
||||
|
||||
};
|
||||
|
||||
#endif /* HDYNAMICCNNGPU */
|
33
network/h_dynamic_cnn_gpu_cpp_v1/Makefile
Normal file
33
network/h_dynamic_cnn_gpu_cpp_v1/Makefile
Normal file
|
@ -0,0 +1,33 @@
|
|||
include ../.env
|
||||
export
|
||||
|
||||
name = HDynamicCNN
|
||||
type = GPU
|
||||
|
||||
PYPOSTFIX := $(shell $(PYBIN)python3-config --extension-suffix)
|
||||
PYBIND11INCLUDE := $(shell $(PYBIN)python3 -m pybind11 --includes)
|
||||
PARAMETERS_O = $(PARAMETERS_O_GPU) $(PYBIND11INCLUDE)
|
||||
PARAMETERS_Linker = $(PARAMETERS_Linker_GPU)
|
||||
|
||||
so_file = Py$(name)$(type)$(PYPOSTFIX)
|
||||
pyi_file = Py$(name)$(type).pyi
|
||||
all: ../$(so_file)
|
||||
|
||||
$(O_DIRS)$(name)$(type).o: $(name)$(type).h $(name)$(type).cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c $(name)$(type).cu -o $(O_DIRS)$(name)$(type).o
|
||||
|
||||
$(O_DIRS)Py$(name)$(type).o: $(name)$(type).h Py$(name)$(type).cpp
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c Py$(name)$(type).cpp -o $(O_DIRS)Py$(name)$(type).o
|
||||
|
||||
../$(so_file): $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
|
||||
$(NVCC) $(PARAMETERS_Linker) -o ../$(so_file) $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
|
||||
|
||||
|
||||
#######################
|
||||
clean:
|
||||
rm -rf $(O_DIRS)
|
||||
rm -f ../$(so_file)
|
||||
rm -f ../$(pyi_file)
|
||||
|
18
network/h_dynamic_cnn_gpu_cpp_v1/PyHDynamicCNNGPU.cpp
Normal file
18
network/h_dynamic_cnn_gpu_cpp_v1/PyHDynamicCNNGPU.cpp
Normal file
|
@ -0,0 +1,18 @@
|
|||
#include <pybind11/pybind11.h>
|
||||
|
||||
#include "HDynamicCNNGPU.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_MODULE(PyHDynamicCNNGPU, m)
|
||||
{
|
||||
m.doc() = "HDynamicCNNGPU Module";
|
||||
py::class_<HDynamicCNNGPU>(m, "HDynamicCNNGPU")
|
||||
.def(py::init<>())
|
||||
.def("gpu_occupancy_export",
|
||||
&HDynamicCNNGPU::gpu_occupancy_export)
|
||||
.def("gpu_occupancy_import",
|
||||
&HDynamicCNNGPU::gpu_occupancy_import)
|
||||
.def("update",
|
||||
&HDynamicCNNGPU::entrypoint);
|
||||
}
|
727
network/h_dynamic_cnn_gpu_cpp_v2_pre/HDynamicCNNGPU.cu
Normal file
727
network/h_dynamic_cnn_gpu_cpp_v2_pre/HDynamicCNNGPU.cu
Normal file
|
@ -0,0 +1,727 @@
|
|||
#include <omp.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <chrono>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "HDynamicCNNGPU.h"
|
||||
#include "kernel_phxy_fill_with_h.h"
|
||||
#include "kernel_phxy_fill_with_spike_selected_w.h"
|
||||
#include "kernel_phxy_one_over_sum_into_pxy.h"
|
||||
#include "kernel_phxy_plus_phxy.h"
|
||||
#include "kernel_phxy_plus_pxy.h"
|
||||
#include "kernel_phxy_times_phxy_equals_phxy.h"
|
||||
#include "kernel_phxy_times_pxy.h"
|
||||
#include "kernel_pxy_plus_v.h"
|
||||
#include "kernel_pxy_reciprocal.h"
|
||||
#include "kernel_pxy_set_to_v.h"
|
||||
#include "kernel_pxy_time_pxy.h"
|
||||
#include "kernel_pxy_times_spike_selected_sxy.h"
|
||||
#include "kernel_pxy_times_v.h"
|
||||
|
||||
HDynamicCNNGPU::HDynamicCNNGPU()
|
||||
{
|
||||
|
||||
};
|
||||
|
||||
HDynamicCNNGPU::~HDynamicCNNGPU()
|
||||
{
|
||||
|
||||
};
|
||||
|
||||
void HDynamicCNNGPU::entrypoint(
|
||||
int64_t h_pointer_addr,
|
||||
int64_t h_dim_0,
|
||||
int64_t h_dim_1,
|
||||
int64_t h_dim_2,
|
||||
int64_t h_dim_3,
|
||||
int64_t epsilon_xy_pointer_addr,
|
||||
int64_t epsilon_xy_dim_0,
|
||||
int64_t epsilon_xy_dim_1,
|
||||
int64_t epsilon_xy_dim_2,
|
||||
int64_t epsilon_t_pointer_addr,
|
||||
int64_t epsilon_t_dim_0,
|
||||
int64_t weights_pointer_addr,
|
||||
int64_t weights_dim_0,
|
||||
int64_t weights_dim_1,
|
||||
int64_t input_pointer_addr,
|
||||
int64_t input_dim_0,
|
||||
int64_t input_dim_1,
|
||||
int64_t input_dim_2,
|
||||
int64_t input_dim_3,
|
||||
int64_t init_vector_pointer_addr,
|
||||
int64_t init_vector_dim_0,
|
||||
int64_t number_of_processes,
|
||||
float forgetting_offset,
|
||||
int64_t gpu_tuning_factor
|
||||
)
|
||||
{
|
||||
std::cout << "Hello\n";
|
||||
|
||||
size_t number_of_pattern = input_dim_0;
|
||||
|
||||
size_t h_dim = init_vector_dim_0;
|
||||
float* h_init_ptr = (float*)init_vector_pointer_addr;
|
||||
assert((h_init_ptr != nullptr));
|
||||
assert((h_dim > 0));
|
||||
|
||||
float* h_pointer = (float*)h_pointer_addr;
|
||||
assert((h_pointer != nullptr));
|
||||
assert((h_dim_0 > 0));
|
||||
assert((h_dim_1 > 0));
|
||||
assert((h_dim_2 > 0));
|
||||
assert((h_dim_3 > 0));
|
||||
|
||||
size_t h_dim_c0 = h_dim_1 * h_dim_2 * h_dim_3;
|
||||
size_t h_dim_c1 = h_dim_2 * h_dim_3;
|
||||
size_t h_dim_c2 = h_dim_3;
|
||||
|
||||
float* epsilon_xy_pointer = nullptr;
|
||||
size_t epsilon_xy_dim_c0 = 0;
|
||||
size_t epsilon_xy_dim_c1 = 0;
|
||||
if (epsilon_xy_pointer_addr != 0)
|
||||
{
|
||||
epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
|
||||
assert((epsilon_xy_pointer != nullptr));
|
||||
assert((epsilon_xy_dim_0 > 0));
|
||||
assert((epsilon_xy_dim_1 > 0));
|
||||
assert((epsilon_xy_dim_2 > 0));
|
||||
|
||||
epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
|
||||
epsilon_xy_dim_c1 = epsilon_xy_dim_2;
|
||||
}
|
||||
|
||||
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
|
||||
assert((epsilon_t_pointer != nullptr));
|
||||
assert((epsilon_t_dim_0 > 0));
|
||||
|
||||
float* weights_pointer = (float*)weights_pointer_addr;
|
||||
assert((weights_pointer != nullptr));
|
||||
assert((weights_dim_0 > 0));
|
||||
assert((weights_dim_1 > 0));
|
||||
|
||||
size_t weights_dim_c0 = weights_dim_1;
|
||||
|
||||
int64_t* input_pointer = (int64_t*)input_pointer_addr;
|
||||
assert((input_pointer != nullptr));
|
||||
assert((input_dim_0 > 0));
|
||||
assert((input_dim_1 > 0));
|
||||
assert((input_dim_2 > 0));
|
||||
assert((input_dim_3 > 0));
|
||||
|
||||
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
|
||||
size_t input_dim_c1 = input_dim_2 * input_dim_3;
|
||||
size_t input_dim_c2 = input_dim_3;
|
||||
|
||||
assert((h_dim == weights_dim_1));
|
||||
size_t number_of_spikes = input_dim_1;
|
||||
size_t dim_x = input_dim_2;
|
||||
size_t dim_y = input_dim_3;
|
||||
|
||||
float forgetting_offset_local = forgetting_offset / static_cast<float>(h_dim);
|
||||
|
||||
// --------------------
|
||||
assert((number_of_processes <= 0));
|
||||
gpu_update(h_init_ptr, h_pointer, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
|
||||
epsilon_xy_pointer, epsilon_xy_dim_c0, epsilon_xy_dim_c1,
|
||||
epsilon_t_pointer, weights_pointer, weights_dim_c0,
|
||||
input_pointer, input_dim_c0, input_dim_c1, input_dim_c2,
|
||||
number_of_spikes, dim_x, dim_y, forgetting_offset,
|
||||
forgetting_offset_local, number_of_pattern, gpu_tuning_factor);
|
||||
return;
|
||||
};
|
||||
|
||||
|
||||
void HDynamicCNNGPU::gpu_occupancy_measure(
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim)
|
||||
{
|
||||
grid_and_thread_calculated = false;
|
||||
assert((dim_x < 65535));
|
||||
assert((dim_y < 65535));
|
||||
|
||||
grid_and_thread_settings.resize(14);
|
||||
|
||||
occupancy_kernel_phxy_plus_phxy(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY], display_debug);
|
||||
|
||||
occupancy_kernel_pxy_plus_v(dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V],
|
||||
display_debug);
|
||||
|
||||
occupancy_kernel_pxy_times_v(dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V],
|
||||
display_debug);
|
||||
|
||||
occupancy_kernel_phxy_fill_with_h(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H], display_debug);
|
||||
|
||||
occupancy_kernel_phxy_plus_pxy(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY], display_debug);
|
||||
|
||||
occupancy_kernel_pxy_reciprocal(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL], display_debug);
|
||||
|
||||
occupancy_kernel_phxy_fill_with_spike_selected_w(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W],
|
||||
display_debug);
|
||||
|
||||
occupancy_kernel_phxy_times_phxy_equals_phxy(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY],
|
||||
display_debug);
|
||||
|
||||
occupancy_kernel_pxy_set_to_v(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V], display_debug);
|
||||
|
||||
occupancy_kernel_phxy_one_over_sum_into_pxy(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY],
|
||||
display_debug);
|
||||
|
||||
occupancy_kernel_phxy_times_pxy(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY], display_debug);
|
||||
|
||||
occupancy_kernel_pxy_time_pxy(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY], display_debug);
|
||||
|
||||
// occupancy_kernel_approximation_pure_multiplication(
|
||||
// dim_x, dim_y, number_of_pattern, h_dim,
|
||||
// grid_and_thread_settings[ID_KERNEL_APPROXIMATION_MULTIPLICATION],
|
||||
// display_debug);
|
||||
|
||||
occupancy_kernel_pxy_times_spike_selected_sxy(
|
||||
dim_x, dim_y, number_of_pattern, h_dim,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY],
|
||||
display_debug);
|
||||
|
||||
grid_and_thread_calculated = true;
|
||||
return;
|
||||
};
|
||||
|
||||
void HDynamicCNNGPU::gpu_occupancy_export(
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1)
|
||||
{
|
||||
int64_t* setting_memory = (int64_t*)setting_memory_addr;
|
||||
|
||||
assert((setting_memory != nullptr));
|
||||
assert((setting_dim_1 == H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS));
|
||||
|
||||
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
|
||||
assert((grid_and_thread_calculated == true));
|
||||
|
||||
assert((setting_dim_0 == grid_and_thread_settings.size()));
|
||||
|
||||
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++)
|
||||
{
|
||||
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++)
|
||||
{
|
||||
setting_memory[counter_0 * setting_dim_1 + counter_1] =
|
||||
grid_and_thread_settings[counter_0][counter_1];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void HDynamicCNNGPU::gpu_occupancy_import(
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1)
|
||||
{
|
||||
grid_and_thread_calculated = false;
|
||||
|
||||
int64_t* setting_memory = (int64_t*)setting_memory_addr;
|
||||
|
||||
assert((setting_memory != nullptr));
|
||||
assert((setting_dim_1 == H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS));
|
||||
assert((setting_dim_0 == H_DYNAMIC_NUMBER_OF_KERNELS));
|
||||
|
||||
grid_and_thread_settings.resize(H_DYNAMIC_NUMBER_OF_KERNELS);
|
||||
|
||||
for (size_t counter_0 = 0; counter_0 < setting_dim_0; counter_0++)
|
||||
{
|
||||
grid_and_thread_settings[counter_0].resize(
|
||||
H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS);
|
||||
|
||||
for (size_t counter_1 = 0; counter_1 < setting_dim_1; counter_1++)
|
||||
{
|
||||
grid_and_thread_settings[counter_0][counter_1] =
|
||||
setting_memory[counter_0 * setting_dim_1 + counter_1];
|
||||
}
|
||||
}
|
||||
|
||||
grid_and_thread_calculated = true;
|
||||
};
|
||||
|
||||
void HDynamicCNNGPU::gpu_update(
|
||||
float* h_init_ptr,
|
||||
float* h_pointer,
|
||||
size_t h_dim_c0,
|
||||
size_t h_dim_c1,
|
||||
size_t h_dim_c2,
|
||||
size_t h_dim,
|
||||
float* epsilon_xy_pointer,
|
||||
size_t epsilon_xy_dim_c0,
|
||||
size_t epsilon_xy_dim_c1,
|
||||
float* epsilon_t_pointer,
|
||||
float* weights_pointer,
|
||||
size_t weights_dim_c0,
|
||||
int64_t* input_pointer,
|
||||
size_t input_dim_c0,
|
||||
size_t input_dim_c1,
|
||||
size_t input_dim_c2,
|
||||
size_t number_of_spikes,
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
float forgetting_offset,
|
||||
float forgetting_offset_local,
|
||||
size_t number_of_pattern,
|
||||
size_t gpu_tuning_factor)
|
||||
{
|
||||
std::cout << "0\n";
|
||||
if (grid_and_thread_calculated == false)
|
||||
{
|
||||
gpu_occupancy_measure(dim_x, dim_y, number_of_pattern, h_dim);
|
||||
}
|
||||
assert((grid_and_thread_calculated == true));
|
||||
|
||||
cudaError_t status;
|
||||
|
||||
size_t h_sum_dim_c0 = dim_x * dim_y;
|
||||
size_t h_sum_dim_c1 = dim_y;
|
||||
|
||||
size_t phxy_block_dim_c0 = h_dim * dim_x * dim_y;
|
||||
size_t phxy_block_dim_c1 = dim_x * dim_y;
|
||||
size_t phxy_block_dim_c2 = dim_y;
|
||||
|
||||
size_t pxy_block_dim_c0 = dim_x * dim_y;
|
||||
size_t pxy_block_dim_c1 = dim_y;
|
||||
|
||||
std::cout << "1\n";
|
||||
float* w_memory = nullptr;
|
||||
status = cudaMalloc((void**)&w_memory, number_of_pattern * h_dim * dim_x *
|
||||
dim_y * sizeof(float));
|
||||
assert((status == cudaSuccess));
|
||||
std::cout << "2\n";
|
||||
float* h_temp_memory = nullptr;
|
||||
status =
|
||||
cudaMalloc((void**)&h_temp_memory,
|
||||
number_of_pattern * h_dim * dim_x * dim_y * sizeof(float));
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "3\n";
|
||||
float* h_sum_memory = nullptr;
|
||||
status = cudaMalloc((void**)&h_sum_memory,
|
||||
number_of_pattern * dim_x * dim_y * sizeof(float));
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "4\n";
|
||||
float* epsilon_subsegment_memory = nullptr;
|
||||
status = cudaMalloc((void**)&epsilon_subsegment_memory,
|
||||
number_of_pattern * dim_x * dim_y * sizeof(float));
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "5\n";
|
||||
float* epsilon_scale_memory = nullptr;
|
||||
status = cudaMalloc((void**)&epsilon_scale_memory,
|
||||
number_of_pattern * dim_x * dim_y * sizeof(float));
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
|
||||
std::cout << "6\n";
|
||||
float* forget_memory = nullptr;
|
||||
if (forgetting_offset > 0.0)
|
||||
{
|
||||
status = cudaMalloc((void**)&forget_memory,
|
||||
number_of_pattern * dim_x * dim_y * sizeof(float));
|
||||
assert((status == cudaSuccess));
|
||||
}
|
||||
// ---
|
||||
std::cout << "A\n";
|
||||
// Initialize h
|
||||
kernel_phxy_fill_with_h<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][5])>>>(
|
||||
h_init_ptr, h_pointer, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
|
||||
phxy_block_dim_c0, phxy_block_dim_c1, phxy_block_dim_c2,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_H][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "B\n";
|
||||
// Set epsilon memory scale to 1.0
|
||||
kernel_pxy_set_to_v<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
|
||||
epsilon_scale_memory, 1.0,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "C\n";
|
||||
for (size_t counter_spike = 0; counter_spike < number_of_spikes;
|
||||
counter_spike++)
|
||||
{
|
||||
// Get epsilon_t from gpu memory
|
||||
float epsilon_t;
|
||||
status = cudaMemcpy(&epsilon_t, &epsilon_t_pointer[counter_spike],
|
||||
sizeof(float), cudaMemcpyDeviceToHost);
|
||||
assert((status == cudaSuccess));
|
||||
// Set epsilon memory subsegment to epsilon(t)
|
||||
kernel_pxy_set_to_v<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
|
||||
epsilon_subsegment_memory, epsilon_t,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "D\n";
|
||||
if (forget_memory != nullptr)
|
||||
{
|
||||
// Set forget memory subsegment to forgetting_offset_local
|
||||
kernel_pxy_set_to_v<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
|
||||
forget_memory, forgetting_offset_local,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
}
|
||||
|
||||
std::cout << "E\n";
|
||||
// if (*spike >= 0) {
|
||||
// epsilon_subsegment = *epsilon_xy_pointer[*spike *
|
||||
// epsilon_xy_dim_c0]
|
||||
if (epsilon_xy_dim_c0 != 0)
|
||||
{
|
||||
kernel_pxy_times_spike_selected_sxy<<<
|
||||
dim3(
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY]
|
||||
[2]),
|
||||
dim3(
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY]
|
||||
[5])>>>(
|
||||
epsilon_subsegment_memory, epsilon_xy_pointer, input_pointer,
|
||||
counter_spike, input_dim_c0, input_dim_c1, input_dim_c2,
|
||||
epsilon_xy_dim_c0, epsilon_xy_dim_c1, epsilon_xy_dim_c0,
|
||||
epsilon_xy_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
}
|
||||
std::cout << "F\n";
|
||||
// Get the weight vectors according the spikes
|
||||
kernel_phxy_fill_with_spike_selected_w<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
|
||||
[0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
|
||||
[1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
|
||||
[2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
|
||||
[3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
|
||||
[4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W]
|
||||
[5])>>>(
|
||||
w_memory, weights_pointer, input_pointer, counter_spike, weights_dim_c0,
|
||||
input_dim_c0, input_dim_c1, input_dim_c2, h_dim_c0, h_dim_c1, h_dim_c2,
|
||||
h_dim, phxy_block_dim_c0, phxy_block_dim_c1, phxy_block_dim_c2,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "G\n";
|
||||
// h_temp = h * w
|
||||
kernel_phxy_times_phxy_equals_phxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
|
||||
[0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
|
||||
[1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
|
||||
[2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
|
||||
[3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
|
||||
[4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY]
|
||||
[5])>>>(
|
||||
h_pointer, w_memory, h_temp_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "H\n";
|
||||
// 1 / sum h_temp
|
||||
kernel_phxy_one_over_sum_into_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY]
|
||||
[5])>>>(
|
||||
h_temp_memory, h_sum_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
|
||||
h_sum_dim_c0, h_sum_dim_c1, pxy_block_dim_c0, pxy_block_dim_c1,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "I\n";
|
||||
// epsilon_scale / sum h_temp
|
||||
kernel_pxy_time_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
|
||||
h_sum_memory, epsilon_scale_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "J\n";
|
||||
// epsilon_subsegment * epsilon_scale / sum h_temp
|
||||
kernel_pxy_time_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
|
||||
h_sum_memory, epsilon_subsegment_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "K\n";
|
||||
// epsilon_scale * forget_memory which contains forgetting_offset_local
|
||||
if (forget_memory != nullptr)
|
||||
{
|
||||
kernel_pxy_time_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
|
||||
forget_memory, epsilon_scale_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
}
|
||||
|
||||
std::cout << "L\n";
|
||||
// delta_forget = epsilon_subsegment * epsilon_scale * forget_memory
|
||||
if (forget_memory != nullptr)
|
||||
{
|
||||
kernel_pxy_time_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
|
||||
forget_memory, epsilon_subsegment_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
}
|
||||
std::cout << "M\n";
|
||||
// delta_h = h_temp_memory * epsilon_subsegment * epsilon_scale / sum h
|
||||
kernel_phxy_times_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][5])>>>(
|
||||
h_temp_memory, h_sum_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
|
||||
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
|
||||
phxy_block_dim_c2,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "N\n";
|
||||
// h + delta_h
|
||||
kernel_phxy_plus_phxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][5])>>>(
|
||||
h_pointer, h_temp_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PHXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "O\n";
|
||||
// h + delta_h + delta_forget
|
||||
kernel_phxy_plus_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][5])>>>(
|
||||
h_pointer, forget_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
|
||||
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
|
||||
phxy_block_dim_c2,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_PLUS_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "P\n";
|
||||
kernel_pxy_times_v<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][5])>>>(
|
||||
epsilon_subsegment_memory, (1.0 + forgetting_offset),
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIMES_V][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "Q\n";
|
||||
kernel_pxy_plus_v<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][5])>>>(
|
||||
epsilon_subsegment_memory, 1.0,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_PLUS_V][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "R\n";
|
||||
// epsilon_scale * epsilon_subsegment
|
||||
kernel_pxy_time_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][5])>>>(
|
||||
epsilon_scale_memory, epsilon_subsegment_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_TIME_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
if (((counter_spike > 0) && (counter_spike % 5000 == 0)) ||
|
||||
(counter_spike + 1 == number_of_spikes))
|
||||
{
|
||||
std::cout << "S\n";
|
||||
kernel_pxy_reciprocal<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][5])>>>(
|
||||
epsilon_scale_memory,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_RECIPROCAL][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "T\n";
|
||||
kernel_phxy_times_pxy<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][5])>>>(
|
||||
h_pointer, epsilon_scale_memory, h_dim_c0, h_dim_c1, h_dim_c2, h_dim,
|
||||
h_sum_dim_c0, h_sum_dim_c1, phxy_block_dim_c0, phxy_block_dim_c1,
|
||||
phxy_block_dim_c2,
|
||||
grid_and_thread_settings[ID_KERNEL_PHXY_TIMES_PXY][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
std::cout << "U\n";
|
||||
// Set epsilon memory scale to 1.0
|
||||
kernel_pxy_set_to_v<<<
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][0],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][1],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][2]),
|
||||
dim3(grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][3],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][4],
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][5])>>>(
|
||||
epsilon_scale_memory, 1.0,
|
||||
grid_and_thread_settings[ID_KERNEL_PXY_SET_TO_V][6]);
|
||||
status = cudaDeviceSynchronize();
|
||||
assert((status == cudaSuccess));
|
||||
}
|
||||
}
|
||||
std::cout << "V\n";
|
||||
// ------------
|
||||
|
||||
status = cudaFree(w_memory);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
status = cudaFree(h_temp_memory);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
status = cudaFree(h_sum_memory);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
status = cudaFree(epsilon_subsegment_memory);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
status = cudaFree(epsilon_scale_memory);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
if (forget_memory != nullptr)
|
||||
{
|
||||
status = cudaFree(forget_memory);
|
||||
assert((status == cudaSuccess));
|
||||
}
|
||||
|
||||
return;
|
||||
};
|
113
network/h_dynamic_cnn_gpu_cpp_v2_pre/HDynamicCNNGPU.h
Normal file
113
network/h_dynamic_cnn_gpu_cpp_v2_pre/HDynamicCNNGPU.h
Normal file
|
@ -0,0 +1,113 @@
|
|||
#ifndef HDYNAMICCNNGPU
|
||||
#define HDYNAMICCNNGPU
|
||||
|
||||
#include <cuda.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <cctype>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#define ID_KERNEL_PHXY_PLUS_PHXY 0
|
||||
#define ID_KERNEL_PXY_PLUS_V 1
|
||||
#define ID_KERNEL_PXY_TIMES_V 2
|
||||
#define ID_KERNEL_PHXY_FILL_WITH_H 3
|
||||
#define ID_KERNEL_PHXY_PLUS_PXY 4
|
||||
#define ID_KERNEL_PXY_RECIPROCAL 5
|
||||
#define ID_KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W 6
|
||||
#define ID_KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY 7
|
||||
#define ID_KERNEL_PXY_SET_TO_V 8
|
||||
#define ID_KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY 9
|
||||
#define ID_KERNEL_PHXY_TIMES_PXY 10
|
||||
#define ID_KERNEL_PXY_TIME_PXY 11
|
||||
#define ID_KERNEL_APPROXIMATION_MULTIPLICATION 12
|
||||
#define ID_KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY 13
|
||||
|
||||
#define H_DYNAMIC_NUMBER_OF_KERNELS 14
|
||||
#define H_DYNAMIC_NUMBER_OF_KERNELS_PARAMETERS 7
|
||||
|
||||
class HDynamicCNNGPU
|
||||
{
|
||||
public:
|
||||
HDynamicCNNGPU();
|
||||
~HDynamicCNNGPU();
|
||||
|
||||
void entrypoint(
|
||||
int64_t h_pointer_addr,
|
||||
int64_t h_dim_0,
|
||||
int64_t h_dim_1,
|
||||
int64_t h_dim_2,
|
||||
int64_t h_dim_3,
|
||||
int64_t epsilon_xy_pointer_addr,
|
||||
int64_t epsilon_xy_dim_0,
|
||||
int64_t epsilon_xy_dim_1,
|
||||
int64_t epsilon_xy_dim_2,
|
||||
int64_t epsilon_t_pointer_addr,
|
||||
int64_t epsilon_t_dim_0,
|
||||
int64_t weights_pointer_addr,
|
||||
int64_t weights_dim_0,
|
||||
int64_t weights_dim_1,
|
||||
int64_t input_pointer_addr,
|
||||
int64_t input_dim_0,
|
||||
int64_t input_dim_1,
|
||||
int64_t input_dim_2,
|
||||
int64_t input_dim_3,
|
||||
int64_t init_vector_pointer_addr,
|
||||
int64_t init_vector_dim_0,
|
||||
int64_t number_of_processes,
|
||||
float forgetting_offset,
|
||||
int64_t gpu_tuning_factor
|
||||
);
|
||||
|
||||
void gpu_occupancy_export(
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1);
|
||||
|
||||
void gpu_occupancy_import(
|
||||
int64_t setting_memory_addr,
|
||||
size_t setting_dim_0,
|
||||
size_t setting_dim_1);
|
||||
|
||||
private:
|
||||
|
||||
void gpu_update(
|
||||
float* h_init_ptr,
|
||||
float* h_pointer,
|
||||
size_t h_dim_c0,
|
||||
size_t h_dim_c1,
|
||||
size_t h_dim_c2,
|
||||
size_t h_dim,
|
||||
float* epsilon_xy_pointer,
|
||||
size_t epsilon_xy_dim_c0,
|
||||
size_t epsilon_xy_dim_c1,
|
||||
float* epsilon_t_pointer,
|
||||
float* weights_pointer,
|
||||
size_t weights_dim_c0,
|
||||
int64_t* input_pointer,
|
||||
size_t input_dim_c0,
|
||||
size_t input_dim_c1,
|
||||
size_t input_dim_c2,
|
||||
size_t number_of_spikes,
|
||||
size_t dim_x, size_t dim_y,
|
||||
float forgetting_offset,
|
||||
float forgetting_offset_local,
|
||||
size_t number_of_pattern,
|
||||
size_t gpu_tuning_factor);
|
||||
|
||||
void gpu_occupancy_measure(
|
||||
size_t dim_x,
|
||||
size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim);
|
||||
|
||||
bool grid_and_thread_calculated = false;
|
||||
std::vector<std::vector<size_t>> grid_and_thread_settings;
|
||||
bool display_debug = false;
|
||||
};
|
||||
|
||||
#endif /* HDYNAMICCNNGPU */
|
153
network/h_dynamic_cnn_gpu_cpp_v2_pre/Makefile
Normal file
153
network/h_dynamic_cnn_gpu_cpp_v2_pre/Makefile
Normal file
|
@ -0,0 +1,153 @@
|
|||
include ../.env
|
||||
export
|
||||
|
||||
name = HDynamicCNN
|
||||
type = GPU
|
||||
|
||||
PYPOSTFIX := $(shell $(PYBIN)python3-config --extension-suffix)
|
||||
PYBIND11INCLUDE := $(shell $(PYBIN)python3 -m pybind11 --includes)
|
||||
PARAMETERS_O = $(PARAMETERS_O_GPU) $(PYBIND11INCLUDE)
|
||||
PARAMETERS_Linker = $(PARAMETERS_Linker_GPU)
|
||||
|
||||
so_file = Py$(name)$(type)$(PYPOSTFIX)
|
||||
pyi_file = Py$(name)$(type).pyi
|
||||
all: ../$(so_file)
|
||||
|
||||
|
||||
$(O_DIRS)$(name)$(type).o: \
|
||||
$(name)$(type).h \
|
||||
$(name)$(type).cu \
|
||||
kernel_helper_functions.h \
|
||||
kernel_phxy_plus_pxy.h \
|
||||
kernel_pxy_set_to_v.h \
|
||||
kernel_phxy_fill_with_h.h \
|
||||
kernel_phxy_times_phxy_equals_phxy.h \
|
||||
kernel_pxy_time_pxy.h \
|
||||
kernel_phxy_fill_with_spike_selected_w.h \
|
||||
kernel_phxy_times_pxy.h \
|
||||
kernel_pxy_times_spike_selected_sxy.h \
|
||||
kernel_phxy_one_over_sum_into_pxy.h \
|
||||
kernel_pxy_plus_v.h \
|
||||
kernel_pxy_times_v.h \
|
||||
kernel_phxy_plus_phxy.h \
|
||||
kernel_pxy_reciprocal.h
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c $(name)$(type).cu -o $(O_DIRS)$(name)$(type).o
|
||||
|
||||
$(O_DIRS)Py$(name)$(type).o: $(name)$(type).h Py$(name)$(type).cpp
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c Py$(name)$(type).cpp -o $(O_DIRS)Py$(name)$(type).o
|
||||
|
||||
../$(so_file): \
|
||||
$(O_DIRS)$(name)$(type).o \
|
||||
$(O_DIRS)Py$(name)$(type).o \
|
||||
$(O_DIRS)kernel_helper_functions.o \
|
||||
$(O_DIRS)kernel_phxy_plus_pxy.o \
|
||||
$(O_DIRS)kernel_pxy_set_to_v.o \
|
||||
$(O_DIRS)kernel_phxy_fill_with_h.o \
|
||||
$(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o \
|
||||
$(O_DIRS)kernel_pxy_time_pxy.o \
|
||||
$(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o \
|
||||
$(O_DIRS)kernel_phxy_times_pxy.o \
|
||||
$(O_DIRS)kernel_pxy_times_spike_selected_sxy.o \
|
||||
$(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o \
|
||||
$(O_DIRS)kernel_pxy_plus_v.o \
|
||||
$(O_DIRS)kernel_pxy_times_v.o \
|
||||
$(O_DIRS)kernel_phxy_plus_phxy.o \
|
||||
$(O_DIRS)kernel_pxy_reciprocal.o
|
||||
$(NVCC) $(PARAMETERS_Linker) -o ../$(so_file) \
|
||||
$(O_DIRS)$(name)$(type).o \
|
||||
$(O_DIRS)Py$(name)$(type).o \
|
||||
$(O_DIRS)kernel_helper_functions.o \
|
||||
$(O_DIRS)kernel_phxy_plus_pxy.o \
|
||||
$(O_DIRS)kernel_pxy_set_to_v.o \
|
||||
$(O_DIRS)kernel_phxy_fill_with_h.o \
|
||||
$(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o \
|
||||
$(O_DIRS)kernel_pxy_time_pxy.o \
|
||||
$(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o \
|
||||
$(O_DIRS)kernel_phxy_times_pxy.o \
|
||||
$(O_DIRS)kernel_pxy_times_spike_selected_sxy.o \
|
||||
$(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o \
|
||||
$(O_DIRS)kernel_pxy_plus_v.o \
|
||||
$(O_DIRS)kernel_pxy_times_v.o \
|
||||
$(O_DIRS)kernel_phxy_plus_phxy.o \
|
||||
$(O_DIRS)kernel_pxy_reciprocal.o
|
||||
|
||||
|
||||
$(O_DIRS)kernel_helper_functions.o: kernel_helper_functions.h kernel_helper_functions.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_helper_functions.cu -o $(O_DIRS)kernel_helper_functions.o
|
||||
|
||||
$(O_DIRS)kernel_phxy_plus_pxy.o: kernel_helper_functions.h \
|
||||
kernel_phxy_plus_pxy.h kernel_phxy_plus_pxy.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_plus_pxy.cu -o $(O_DIRS)kernel_phxy_plus_pxy.o
|
||||
|
||||
$(O_DIRS)kernel_pxy_set_to_v.o: kernel_helper_functions.h \
|
||||
kernel_pxy_set_to_v.h kernel_pxy_set_to_v.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_set_to_v.cu -o $(O_DIRS)kernel_pxy_set_to_v.o
|
||||
|
||||
$(O_DIRS)kernel_phxy_fill_with_h.o: kernel_helper_functions.h \
|
||||
kernel_phxy_fill_with_h.h kernel_phxy_fill_with_h.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_fill_with_h.cu -o $(O_DIRS)kernel_phxy_fill_with_h.o
|
||||
|
||||
$(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o: kernel_helper_functions.h \
|
||||
kernel_phxy_times_phxy_equals_phxy.h kernel_phxy_times_phxy_equals_phxy.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_times_phxy_equals_phxy.cu -o $(O_DIRS)kernel_phxy_times_phxy_equals_phxy.o
|
||||
|
||||
$(O_DIRS)kernel_pxy_time_pxy.o: kernel_helper_functions.h \
|
||||
kernel_pxy_time_pxy.h kernel_pxy_time_pxy.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_time_pxy.cu -o $(O_DIRS)kernel_pxy_time_pxy.o
|
||||
|
||||
$(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o: kernel_helper_functions.h \
|
||||
kernel_phxy_fill_with_spike_selected_w.h kernel_phxy_fill_with_spike_selected_w.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_fill_with_spike_selected_w.cu -o $(O_DIRS)kernel_phxy_fill_with_spike_selected_w.o
|
||||
|
||||
$(O_DIRS)kernel_phxy_times_pxy.o: kernel_helper_functions.h \
|
||||
kernel_phxy_times_pxy.h kernel_phxy_times_pxy.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_times_pxy.cu -o $(O_DIRS)kernel_phxy_times_pxy.o
|
||||
|
||||
$(O_DIRS)kernel_pxy_times_spike_selected_sxy.o: kernel_helper_functions.h \
|
||||
kernel_pxy_times_spike_selected_sxy.h kernel_pxy_times_spike_selected_sxy.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_times_spike_selected_sxy.cu -o $(O_DIRS)kernel_pxy_times_spike_selected_sxy.o
|
||||
|
||||
$(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o: kernel_helper_functions.h \
|
||||
kernel_phxy_one_over_sum_into_pxy.h kernel_phxy_one_over_sum_into_pxy.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_one_over_sum_into_pxy.cu -o $(O_DIRS)kernel_phxy_one_over_sum_into_pxy.o
|
||||
|
||||
$(O_DIRS)kernel_pxy_plus_v.o: kernel_helper_functions.h \
|
||||
kernel_pxy_plus_v.h kernel_pxy_plus_v.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_plus_v.cu -o $(O_DIRS)kernel_pxy_plus_v.o
|
||||
|
||||
$(O_DIRS)kernel_pxy_times_v.o: kernel_helper_functions.h \
|
||||
kernel_pxy_times_v.h kernel_pxy_times_v.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_times_v.cu -o $(O_DIRS)kernel_pxy_times_v.o
|
||||
|
||||
$(O_DIRS)kernel_phxy_plus_phxy.o: kernel_helper_functions.h \
|
||||
kernel_phxy_plus_phxy.h kernel_phxy_plus_phxy.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_phxy_plus_phxy.cu -o $(O_DIRS)kernel_phxy_plus_phxy.o
|
||||
|
||||
$(O_DIRS)kernel_pxy_reciprocal.o: kernel_helper_functions.h \
|
||||
kernel_pxy_reciprocal.h kernel_pxy_reciprocal.cu
|
||||
mkdir -p $(O_DIRS)
|
||||
$(NVCC) $(PARAMETERS_O) -c kernel_pxy_reciprocal.cu -o $(O_DIRS)kernel_pxy_reciprocal.o
|
||||
|
||||
|
||||
|
||||
#######################
|
||||
clean:
|
||||
rm -rf $(O_DIRS)
|
||||
rm -f ../$(so_file)
|
||||
rm -f ../$(pyi_file)
|
||||
|
18
network/h_dynamic_cnn_gpu_cpp_v2_pre/PyHDynamicCNNGPU.cpp
Normal file
18
network/h_dynamic_cnn_gpu_cpp_v2_pre/PyHDynamicCNNGPU.cpp
Normal file
|
@ -0,0 +1,18 @@
|
|||
#include <pybind11/pybind11.h>
|
||||
|
||||
#include "HDynamicCNNGPU.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_MODULE(PyHDynamicCNNGPU, m)
|
||||
{
|
||||
m.doc() = "HDynamicCNNManyIP Module";
|
||||
py::class_<HDynamicCNNGPU>(m, "HDynamicCNNGPU")
|
||||
.def(py::init<>())
|
||||
.def("gpu_occupancy_export",
|
||||
&HDynamicCNNGPU::gpu_occupancy_export)
|
||||
.def("gpu_occupancy_import",
|
||||
&HDynamicCNNGPU::gpu_occupancy_import)
|
||||
.def("update",
|
||||
&HDynamicCNNGPU::entrypoint);
|
||||
}
|
|
@ -0,0 +1,17 @@
|
|||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
|
||||
void kernel_debug_plot(std::vector<size_t> output, bool display_debug) {
|
||||
if (display_debug == true) {
|
||||
std::cout << "grid x: " << output[0] << std::endl;
|
||||
std::cout << "grid y: " << output[1] << std::endl;
|
||||
std::cout << "grid z: " << output[2] << std::endl;
|
||||
std::cout << "thread block x: " << output[3] << std::endl;
|
||||
std::cout << "thread block y: " << output[4] << std::endl;
|
||||
std::cout << "thread block z: " << output[5] << std::endl;
|
||||
std::cout << "max_idx: " << output[6] << std::endl << std::endl;
|
||||
}
|
||||
|
||||
return;
|
||||
};
|
|
@ -0,0 +1,7 @@
|
|||
#ifndef KERNEL_HELPER_FUNCTIONS
|
||||
#define KERNEL_HELPER_FUNCTIONS
|
||||
#include <vector>
|
||||
|
||||
void kernel_debug_plot(std::vector<size_t> output, bool display_debug);
|
||||
|
||||
#endif /* KERNEL_HELPER_FUNCTIONS */
|
|
@ -0,0 +1,64 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_phxy_fill_with_h.h"
|
||||
|
||||
__global__ void kernel_phxy_fill_with_h(float* __restrict__ h_memory,
|
||||
float* __restrict__ phxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t block_dim_c0,
|
||||
size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
size_t pattern_id = idx / block_dim_c0;
|
||||
idx -= pattern_id * block_dim_c0;
|
||||
size_t idx_h = idx / block_dim_c1;
|
||||
idx -= idx_h * block_dim_c1;
|
||||
size_t position_x = idx / block_dim_c2;
|
||||
idx -= position_x * block_dim_c2;
|
||||
size_t position_y = idx;
|
||||
|
||||
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
|
||||
position_x * phxy_dim_c2 + position_y] = h_memory[idx_h];
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_phxy_fill_with_h, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_phxy_fill_with_h:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
|
@ -0,0 +1,18 @@
|
|||
#ifndef KERNEL_PHXY_FILL_WITH_H
|
||||
#define KERNEL_PHXY_FILL_WITH_H
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_phxy_fill_with_h(float* __restrict__ h_memory,
|
||||
float* __restrict__ phxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t block_dim_c0,
|
||||
size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx);
|
||||
|
||||
void occupancy_kernel_phxy_fill_with_h(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PHXY_FILL_WITH_H */
|
|
@ -0,0 +1,73 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_phxy_fill_with_spike_selected_w.h"
|
||||
|
||||
__global__ void kernel_phxy_fill_with_spike_selected_w(
|
||||
float* __restrict__ phxy_memory, float* __restrict__ weights_memory,
|
||||
int64_t* __restrict__ spike_memory, size_t spike_time,
|
||||
size_t weights_dim_c0, size_t spike_dim_c0, size_t spike_dim_c1,
|
||||
size_t spike_dim_c2, size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim, size_t block_dim_c0, size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
size_t pattern_id = idx / block_dim_c0;
|
||||
idx -= pattern_id * block_dim_c0;
|
||||
size_t idx_h = idx / block_dim_c1;
|
||||
idx -= idx_h * block_dim_c1;
|
||||
size_t position_x = idx / block_dim_c2;
|
||||
idx -= position_x * block_dim_c2;
|
||||
size_t position_y = idx;
|
||||
|
||||
int64_t* spike = spike_memory + pattern_id * spike_dim_c0 +
|
||||
spike_time * spike_dim_c1 + position_x * spike_dim_c2 +
|
||||
position_y;
|
||||
|
||||
if (*spike >= 0) {
|
||||
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
|
||||
position_x * phxy_dim_c2 + position_y] =
|
||||
weights_memory[*spike * weights_dim_c0 + idx_h];
|
||||
} else {
|
||||
phxy_memory[pattern_id * phxy_dim_c0 + idx_h * phxy_dim_c1 +
|
||||
position_x * phxy_dim_c2 + position_y] = 0.0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_phxy_fill_with_spike_selected_w(
|
||||
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output, bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size,
|
||||
(void*)kernel_phxy_fill_with_spike_selected_w, 0, max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_phxy_fill_with_spike_selected_w:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
|
@ -0,0 +1,17 @@
|
|||
#ifndef KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W
|
||||
#define KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_phxy_fill_with_spike_selected_w(
|
||||
float* __restrict__ phxy_memory, float* __restrict__ weights_memory,
|
||||
int64_t* __restrict__ spike_memory, size_t spike_time,
|
||||
size_t weights_dim_c0, size_t spike_dim_c0, size_t spike_dim_c1,
|
||||
size_t spike_dim_c2, size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim, size_t block_dim_c0, size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx);
|
||||
|
||||
void occupancy_kernel_phxy_fill_with_spike_selected_w(
|
||||
size_t dim_x, size_t dim_y, size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output, bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PHXY_FILL_WITH_SPIKE_SELECTED_W */
|
|
@ -0,0 +1,74 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_phxy_one_over_sum_into_pxy.h"
|
||||
|
||||
__global__ void kernel_phxy_one_over_sum_into_pxy(
|
||||
float* __restrict__ phxy_memory, float* __restrict__ pxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t pxy_dim_c0, size_t pxy_dim_c1, size_t block_dim_c0,
|
||||
size_t block_dim_c1, size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
size_t pattern_id = idx / block_dim_c0;
|
||||
idx -= pattern_id * block_dim_c0;
|
||||
size_t position_x = idx / block_dim_c1;
|
||||
idx -= position_x * block_dim_c1;
|
||||
size_t position_y = idx;
|
||||
|
||||
size_t offset_phxy_temp =
|
||||
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
|
||||
|
||||
size_t offset_pxy_sum =
|
||||
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
|
||||
|
||||
float temp = 0.0;
|
||||
for (size_t idx_h = 0; idx_h < h_dim; idx_h++) {
|
||||
temp += phxy_memory[offset_phxy_temp + idx_h * phxy_dim_c1];
|
||||
}
|
||||
if (temp > 1E-10) {
|
||||
pxy_memory[offset_pxy_sum] = 1.0 / temp;
|
||||
} else {
|
||||
pxy_memory[offset_pxy_sum] = 0.0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_phxy_one_over_sum_into_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size,
|
||||
(void*)kernel_phxy_one_over_sum_into_pxy, 0, max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_phxy_one_over_sum_into_pxy:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
|
@ -0,0 +1,17 @@
|
|||
#ifndef KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY
|
||||
#define KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_phxy_one_over_sum_into_pxy(
|
||||
float* __restrict__ phxy_memory, float* __restrict__ pxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1, size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t pxy_dim_c0, size_t pxy_dim_c1, size_t block_dim_c0,
|
||||
size_t block_dim_c1, size_t max_idx);
|
||||
|
||||
void occupancy_kernel_phxy_one_over_sum_into_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PHXY_ONE_OVER_SUM_INTO_PXY */
|
|
@ -0,0 +1,51 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_phxy_plus_phxy.h"
|
||||
|
||||
__global__ void kernel_phxy_plus_phxy(float* __restrict__ phxy_memory_a,
|
||||
float* __restrict__ phxy_memory_b,
|
||||
size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
phxy_memory_a[idx] += phxy_memory_b[idx];
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_phxy_plus_phxy, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_phxy_plus_phxy:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
12
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_plus_phxy.h
Normal file
12
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_plus_phxy.h
Normal file
|
@ -0,0 +1,12 @@
|
|||
#ifndef KERNEL_PHXY_PLUS_PHXY
|
||||
#define KERNEL_PHXY_PLUS_PHXY
|
||||
#include <vector>
|
||||
__global__ void kernel_phxy_plus_phxy(float* __restrict__ phxy_memory_a,
|
||||
float* __restrict__ phxy_memory_b,
|
||||
size_t max_idx);
|
||||
|
||||
void occupancy_kernel_phxy_plus_phxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
#endif /* KERNEL_PHXY_PLUS_PHXY */
|
70
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_plus_pxy.cu
Normal file
70
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_plus_pxy.cu
Normal file
|
@ -0,0 +1,70 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_phxy_plus_pxy.h"
|
||||
|
||||
__global__ void kernel_phxy_plus_pxy(float* __restrict__ phxy_memory,
|
||||
float* __restrict__ pxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t pxy_dim_c0, size_t pxy_dim_c1,
|
||||
size_t block_dim_c0, size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
size_t pattern_id = idx / block_dim_c0;
|
||||
idx -= pattern_id * block_dim_c0;
|
||||
size_t idx_h = idx / block_dim_c1;
|
||||
idx -= idx_h * block_dim_c1;
|
||||
size_t position_x = idx / block_dim_c2;
|
||||
idx -= position_x * block_dim_c2;
|
||||
size_t position_y = idx;
|
||||
|
||||
size_t offset_h_temp =
|
||||
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
|
||||
|
||||
size_t offset_h_sum =
|
||||
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
|
||||
|
||||
phxy_memory[offset_h_temp + idx_h * phxy_dim_c1] +=
|
||||
pxy_memory[offset_h_sum];
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_phxy_plus_pxy, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_phxy_plus_pxy:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
16
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_plus_pxy.h
Normal file
16
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_plus_pxy.h
Normal file
|
@ -0,0 +1,16 @@
|
|||
#ifndef KERNEL_PHXY_PLUS_PXY
|
||||
#define KERNEL_PHXY_PLUS_PXY
|
||||
#include <vector>
|
||||
__global__ void kernel_phxy_plus_pxy(float* __restrict__ phxy_memory,
|
||||
float* __restrict__ pxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t pxy_dim_c0, size_t pxy_dim_c1,
|
||||
size_t block_dim_c0, size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx);
|
||||
|
||||
void occupancy_kernel_phxy_plus_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
#endif /* KERNEL_PHXY_PLUS_PXY */
|
|
@ -0,0 +1,53 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_phxy_times_phxy_equals_phxy.h"
|
||||
|
||||
__global__ void kernel_phxy_times_phxy_equals_phxy(
|
||||
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
|
||||
float* __restrict__ phxy_memory_out, size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
phxy_memory_out[idx] = phxy_memory_a[idx] * phxy_memory_b[idx];
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size,
|
||||
(void*)kernel_phxy_times_phxy_equals_phxy, 0, max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_phxy_times_phxy_equals_phxy:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
|
@ -0,0 +1,15 @@
|
|||
#ifndef KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY
|
||||
#define KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_phxy_times_phxy_equals_phxy(
|
||||
float* __restrict__ phxy_memory_a, float* __restrict__ phxy_memory_b,
|
||||
float* __restrict__ phxy_memory_out, size_t max_idx);
|
||||
|
||||
void occupancy_kernel_phxy_times_phxy_equals_phxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PHXY_TIMES_PHXY_EQUALS_PHXY */
|
|
@ -0,0 +1,70 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_phxy_times_pxy.h"
|
||||
|
||||
__global__ void kernel_phxy_times_pxy(float* __restrict__ phxy_memory,
|
||||
float* __restrict__ pxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t pxy_dim_c0, size_t pxy_dim_c1,
|
||||
size_t block_dim_c0, size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
size_t pattern_id = idx / block_dim_c0;
|
||||
idx -= pattern_id * block_dim_c0;
|
||||
size_t idx_h = idx / block_dim_c1;
|
||||
idx -= idx_h * block_dim_c1;
|
||||
size_t position_x = idx / block_dim_c2;
|
||||
idx -= position_x * block_dim_c2;
|
||||
size_t position_y = idx;
|
||||
|
||||
size_t offset_h_temp =
|
||||
pattern_id * phxy_dim_c0 + position_x * phxy_dim_c2 + position_y;
|
||||
|
||||
size_t offset_h_sum =
|
||||
pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 + position_y;
|
||||
|
||||
phxy_memory[offset_h_temp + idx_h * phxy_dim_c1] *=
|
||||
pxy_memory[offset_h_sum];
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * h_dim * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_phxy_times_pxy, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_phxy_times_pxy:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
17
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_times_pxy.h
Normal file
17
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_phxy_times_pxy.h
Normal file
|
@ -0,0 +1,17 @@
|
|||
#ifndef KERNEL_PHXY_TIMES_PXY
|
||||
#define KERNEL_PHXY_TIMES_PXY
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_phxy_times_pxy(float* __restrict__ phxy_memory,
|
||||
float* __restrict__ pxy_memory,
|
||||
size_t phxy_dim_c0, size_t phxy_dim_c1,
|
||||
size_t phxy_dim_c2, size_t h_dim,
|
||||
size_t pxy_dim_c0, size_t pxy_dim_c1,
|
||||
size_t block_dim_c0, size_t block_dim_c1,
|
||||
size_t block_dim_c2, size_t max_idx);
|
||||
|
||||
void occupancy_kernel_phxy_times_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
#endif /* KERNEL_PHXY_TIMES_PXY */
|
50
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_plus_v.cu
Normal file
50
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_plus_v.cu
Normal file
|
@ -0,0 +1,50 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_pxy_plus_v.h"
|
||||
|
||||
__global__ void kernel_pxy_plus_v(float* __restrict__ pxy_memory, float value,
|
||||
size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
pxy_memory[idx] += value;
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_pxy_plus_v, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_pxy_plus_v:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
12
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_plus_v.h
Normal file
12
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_plus_v.h
Normal file
|
@ -0,0 +1,12 @@
|
|||
#ifndef KERNEL_PXY_PLUS_V
|
||||
#define KERNEL_PXY_PLUS_V
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_pxy_plus_v(float* __restrict__ pxy_memory, float value,
|
||||
size_t max_idx);
|
||||
|
||||
void occupancy_kernel_pxy_plus_v(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
#endif /* KERNEL_PXY_PLUS_V */
|
|
@ -0,0 +1,50 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_pxy_reciprocal.h"
|
||||
|
||||
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
|
||||
size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
pxy_memory[idx] = 1.0 / pxy_memory[idx];
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_pxy_reciprocal, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_pxy_reciprocal:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
12
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_reciprocal.h
Normal file
12
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_reciprocal.h
Normal file
|
@ -0,0 +1,12 @@
|
|||
#ifndef KERNEL_PXY_RECIPROCAL
|
||||
#define KERNEL_PXY_RECIPROCAL
|
||||
#include <vector>
|
||||
__global__ void kernel_pxy_reciprocal(float* __restrict__ pxy_memory,
|
||||
size_t max_idx);
|
||||
|
||||
void occupancy_kernel_pxy_reciprocal(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PXY_RECIPROCAL */
|
50
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_set_to_v.cu
Normal file
50
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_set_to_v.cu
Normal file
|
@ -0,0 +1,50 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_pxy_set_to_v.h"
|
||||
|
||||
__global__ void kernel_pxy_set_to_v(float* __restrict__ pxy_memory, float value,
|
||||
size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
pxy_memory[idx] = value;
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_pxy_set_to_v, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_pxy_set_to_v:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
13
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_set_to_v.h
Normal file
13
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_set_to_v.h
Normal file
|
@ -0,0 +1,13 @@
|
|||
#ifndef KERNEL_PXY_SET_TO_V
|
||||
#define KERNEL_PXY_SET_TO_V
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_pxy_set_to_v(float* __restrict__ pxy_memory, float value,
|
||||
size_t max_idx);
|
||||
|
||||
void occupancy_kernel_pxy_set_to_v(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PXY_SET_TO_V */
|
58
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_time_pxy.cu
Normal file
58
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_time_pxy.cu
Normal file
|
@ -0,0 +1,58 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_pxy_time_pxy.h"
|
||||
|
||||
// a *= b
|
||||
__global__ void kernel_pxy_time_pxy(float* __restrict__ pxy_memory_a,
|
||||
float* __restrict__ pxy_memory_b,
|
||||
size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
pxy_memory_a[idx] *= pxy_memory_b[idx];
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_pxy_time_pxy, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
size_t gpu_tuning_factor = 5;
|
||||
|
||||
if ((gpu_tuning_factor > 0) && (gpu_tuning_factor < thread_block_size)) {
|
||||
thread_block_size = int(gpu_tuning_factor);
|
||||
}
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_pxy_time_pxy:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
15
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_time_pxy.h
Normal file
15
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_time_pxy.h
Normal file
|
@ -0,0 +1,15 @@
|
|||
#ifndef KERNEL_PXY_TIME_PXY
|
||||
#define KERNEL_PXY_TIME_PXY
|
||||
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_pxy_time_pxy(float* __restrict__ pxy_memory_a,
|
||||
float* __restrict__ pxy_memory_b,
|
||||
size_t max_idx);
|
||||
|
||||
void occupancy_kernel_pxy_time_pxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PXY_TIME_PXY */
|
|
@ -0,0 +1,73 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_pxy_times_spike_selected_sxy.h"
|
||||
|
||||
__global__ void kernel_pxy_times_spike_selected_sxy(
|
||||
float* __restrict__ pxy_memory, float* __restrict__ sxy_memory,
|
||||
int64_t* __restrict__ spike_memory, size_t spike_time, size_t spike_dim_c0,
|
||||
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
|
||||
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1,
|
||||
size_t block_dim_c0, size_t block_dim_c1, size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
size_t pattern_id = idx / block_dim_c0;
|
||||
idx -= pattern_id * block_dim_c0;
|
||||
size_t position_x = idx / block_dim_c1;
|
||||
idx -= position_x * block_dim_c1;
|
||||
size_t position_y = idx;
|
||||
|
||||
int64_t* spike = spike_memory + pattern_id * spike_dim_c0 +
|
||||
spike_time * spike_dim_c1 + position_x * spike_dim_c2 +
|
||||
position_y;
|
||||
|
||||
if (*spike >= 0) {
|
||||
pxy_memory[pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 +
|
||||
position_y] *=
|
||||
sxy_memory[*spike * sxy_dim_c0 + position_x * sxy_dim_c1 +
|
||||
position_y];
|
||||
} else {
|
||||
pxy_memory[pattern_id * pxy_dim_c0 + position_x * pxy_dim_c1 +
|
||||
position_y] = 0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_pxy_times_spike_selected_sxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size,
|
||||
(void*)kernel_pxy_times_spike_selected_sxy, 0, max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_pxy_times_spike_selected_sxy:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
|
@ -0,0 +1,18 @@
|
|||
#ifndef KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY
|
||||
#define KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_pxy_times_spike_selected_sxy(
|
||||
float* __restrict__ pxy_memory, float* __restrict__ sxy_memory,
|
||||
int64_t* __restrict__ spike_memory, size_t spike_time, size_t spike_dim_c0,
|
||||
size_t spike_dim_c1, size_t spike_dim_c2, size_t pxy_dim_c0,
|
||||
size_t pxy_dim_c1, size_t sxy_dim_c0, size_t sxy_dim_c1,
|
||||
size_t block_dim_c0, size_t block_dim_c1, size_t max_idx);
|
||||
|
||||
void occupancy_kernel_pxy_times_spike_selected_sxy(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern,
|
||||
size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PXY_TIMES_SPIKE_SELECTED_SXY */
|
50
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_times_v.cu
Normal file
50
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_times_v.cu
Normal file
|
@ -0,0 +1,50 @@
|
|||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "kernel_helper_functions.h"
|
||||
#include "kernel_pxy_times_v.h"
|
||||
|
||||
__global__ void kernel_pxy_times_v(float* __restrict__ pxy_memory, float value,
|
||||
size_t max_idx) {
|
||||
size_t idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
|
||||
if (idx < max_idx) {
|
||||
pxy_memory[idx] *= value;
|
||||
}
|
||||
};
|
||||
|
||||
void occupancy_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug) {
|
||||
size_t max_threadable_tasks;
|
||||
cudaError_t status;
|
||||
|
||||
int min_grid_size;
|
||||
int thread_block_size;
|
||||
int grid_size;
|
||||
|
||||
max_threadable_tasks = number_of_pattern * dim_x * dim_y;
|
||||
|
||||
status = cudaOccupancyMaxPotentialBlockSize(
|
||||
&min_grid_size, &thread_block_size, (void*)kernel_pxy_times_v, 0,
|
||||
max_threadable_tasks);
|
||||
assert((status == cudaSuccess));
|
||||
|
||||
grid_size =
|
||||
(max_threadable_tasks + thread_block_size - 1) / thread_block_size;
|
||||
|
||||
output.resize(7);
|
||||
output[0] = grid_size;
|
||||
output[1] = 1;
|
||||
output[2] = 1;
|
||||
output[3] = thread_block_size;
|
||||
output[4] = 1;
|
||||
output[5] = 1;
|
||||
output[6] = max_threadable_tasks;
|
||||
|
||||
if (display_debug == true) {
|
||||
std::cout << "kernel_pxy_times_v:" << std::endl;
|
||||
kernel_debug_plot(output, display_debug);
|
||||
}
|
||||
};
|
13
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_times_v.h
Normal file
13
network/h_dynamic_cnn_gpu_cpp_v2_pre/kernel_pxy_times_v.h
Normal file
|
@ -0,0 +1,13 @@
|
|||
#ifndef KERNEL_PXY_TIMES_V
|
||||
#define KERNEL_PXY_TIMES_V
|
||||
#include <vector>
|
||||
|
||||
__global__ void kernel_pxy_times_v(float* __restrict__ pxy_memory, float value,
|
||||
size_t max_idx);
|
||||
|
||||
void occupancy_kernel_pxy_times_v(size_t dim_x, size_t dim_y,
|
||||
size_t number_of_pattern, size_t h_dim,
|
||||
std::vector<size_t>& output,
|
||||
bool display_debug);
|
||||
|
||||
#endif /* KERNEL_PXY_TIMES_V */
|
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/HDynamicCNNGPU.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/HDynamicCNNGPU.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/PyHDynamicCNNGPU.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/PyHDynamicCNNGPU.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_helper_functions.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_helper_functions.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_fill_with_h.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_fill_with_h.o
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_plus_phxy.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_plus_phxy.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_plus_pxy.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_plus_pxy.o
Normal file
Binary file not shown.
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_times_pxy.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_phxy_times_pxy.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_plus_v.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_plus_v.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_reciprocal.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_reciprocal.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_set_to_v.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_set_to_v.o
Normal file
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_time_pxy.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_time_pxy.o
Normal file
Binary file not shown.
Binary file not shown.
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_times_v.o
Normal file
BIN
network/h_dynamic_cnn_gpu_cpp_v2_pre/o/kernel_pxy_times_v.o
Normal file
Binary file not shown.
14
network/h_dynamic_cnn_gpu_cpp_v2_pre/test.sh
Normal file
14
network/h_dynamic_cnn_gpu_cpp_v2_pre/test.sh
Normal file
|
@ -0,0 +1,14 @@
|
|||
make o/kernel_helper_functions.o
|
||||
make o/kernel_phxy_fill_with_h.o
|
||||
make o/kernel_phxy_fill_with_spike_selected_w.o
|
||||
make o/kernel_phxy_one_over_sum_into_pxy.o
|
||||
make o/kernel_phxy_plus_phxy.o
|
||||
make o/kernel_phxy_plus_pxy.o
|
||||
make o/kernel_phxy_times_phxy_equals_phxy.o
|
||||
make o/kernel_phxy_times_pxy.o
|
||||
make o/kernel_pxy_plus_v.o
|
||||
make o/kernel_pxy_reciprocal.o
|
||||
make o/kernel_pxy_set_to_v.o
|
||||
make o/kernel_pxy_time_pxy.o
|
||||
make o/kernel_pxy_times_spike_selected_sxy.o
|
||||
make o/kernel_pxy_times_v.o
|
Loading…
Reference in a new issue