diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Dataset.py b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Dataset.py deleted file mode 100644 index 11f9854..0000000 --- a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Dataset.py +++ /dev/null @@ -1,422 +0,0 @@ -# MIT License -# Copyright 2022 University of Bremen -# -# Permission is hereby granted, free of charge, to any person obtaining -# a copy of this software and associated documentation files (the "Software"), -# to deal in the Software without restriction, including without limitation -# the rights to use, copy, modify, merge, publish, distribute, sublicense, -# and/or sell copies of the Software, and to permit persons to whom the -# Software is furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included -# in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, -# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR -# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR -# THE USE OR OTHER DEALINGS IN THE SOFTWARE. -# -# -# David Rotermund ( davrot@uni-bremen.de ) -# -# -# Release history: -# ================ -# 1.0.0 -- 01.05.2022: first release -# -# - -from abc import ABC, abstractmethod -import torch -import numpy as np -import torchvision as tv # type: ignore -from Parameter import Config - - -class DatasetMaster(torch.utils.data.Dataset, ABC): - - path_label: str - label_storage: np.ndarray - pattern_storage: np.ndarray - number_of_pattern: int - mean: list[float] - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__() - - if train is True: - self.label_storage = np.load(path_label + "/TrainLabelStorage.npy") - else: - self.label_storage = np.load(path_label + "/TestLabelStorage.npy") - - if train is True: - self.pattern_storage = np.load(path_pattern + "/TrainPatternStorage.npy") - else: - self.pattern_storage = np.load(path_pattern + "/TestPatternStorage.npy") - - self.number_of_pattern = self.label_storage.shape[0] - - self.mean = [] - - def __len__(self) -> int: - return self.number_of_pattern - - # Get one pattern at position index - @abstractmethod - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - pass - - @abstractmethod - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - pass - - @abstractmethod - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - pass - - -class DatasetMNIST(DatasetMaster): - """Contstructor""" - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__(train, path_pattern, path_label) - - self.pattern_storage = np.ascontiguousarray( - self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32) - ) - - self.pattern_storage /= np.max(self.pattern_storage) - - mean = self.pattern_storage.mean(3).mean(2).mean(0) - self.mean = [*mean] - - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - - image = self.pattern_storage[index, 0:1, :, :] - target = int(self.label_storage[index]) - return torch.tensor(image), target - - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The test image comes in - 1. is center cropped - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.CenterCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - - return gray - - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The training image comes in - 1. is cropped from a random position - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.RandomCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - - return gray - - -class DatasetFashionMNIST(DatasetMaster): - """Contstructor""" - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__(train, path_pattern, path_label) - - self.pattern_storage = np.ascontiguousarray( - self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32) - ) - - self.pattern_storage /= np.max(self.pattern_storage) - - mean = self.pattern_storage.mean(3).mean(2).mean(0) - self.mean = [*mean] - - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - - image = self.pattern_storage[index, 0:1, :, :] - target = int(self.label_storage[index]) - return torch.tensor(image), target - - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The test image comes in - 1. is center cropped - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.CenterCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - - return gray - - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The training image comes in - 1. is cropped from a random position - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.RandomCrop(size=cfg.image_statistics.the_size), - tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p), - tv.transforms.ColorJitter( - brightness=cfg.augmentation.jitter_brightness, - contrast=cfg.augmentation.jitter_contrast, - saturation=cfg.augmentation.jitter_saturation, - hue=cfg.augmentation.jitter_hue, - ), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - - return gray - - -class DatasetCIFAR(DatasetMaster): - """Contstructor""" - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__(train, path_pattern, path_label) - - self.pattern_storage = np.ascontiguousarray( - np.moveaxis(self.pattern_storage.astype(dtype=np.float32), 3, 1) - ) - self.pattern_storage /= np.max(self.pattern_storage) - - mean = self.pattern_storage.mean(3).mean(2).mean(0) - self.mean = [*mean] - - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - - image = self.pattern_storage[index, :, :, :] - target = int(self.label_storage[index]) - return torch.tensor(image), target - - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The test image comes in - 1. is center cropped - 2. on/off filteres - 3. returned. - - This is a 3 channel version (e.g. r,g,b channels). - """ - - assert len(cfg.image_statistics.mean) == 3 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.CenterCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - - my_on_off_filter_r: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - my_on_off_filter_g: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[1]) - my_on_off_filter_b: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[2]) - r: torch.Tensor = my_on_off_filter_r( - pattern[:, 0:1, :, :], - ) - g: torch.Tensor = my_on_off_filter_g( - pattern[:, 1:2, :, :], - ) - b: torch.Tensor = my_on_off_filter_b( - pattern[:, 2:3, :, :], - ) - - new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1) - return new_tensor - - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The training image comes in - 1. is cropped from a random position - 2. is randomly horizontally flipped - 3. is randomly color jitteres - 4. on/off filteres - 5. returned. - - This is a 3 channel version (e.g. r,g,b channels). - """ - assert len(cfg.image_statistics.mean) == 3 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.RandomCrop(size=cfg.image_statistics.the_size), - tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p), - tv.transforms.ColorJitter( - brightness=cfg.augmentation.jitter_brightness, - contrast=cfg.augmentation.jitter_contrast, - saturation=cfg.augmentation.jitter_saturation, - hue=cfg.augmentation.jitter_hue, - ), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - my_on_off_filter_r: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - my_on_off_filter_g: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[1]) - my_on_off_filter_b: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[2]) - r: torch.Tensor = my_on_off_filter_r( - pattern[:, 0:1, :, :], - ) - g: torch.Tensor = my_on_off_filter_g( - pattern[:, 1:2, :, :], - ) - b: torch.Tensor = my_on_off_filter_b( - pattern[:, 2:3, :, :], - ) - - new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1) - return new_tensor - - -class OnOffFilter(torch.nn.Module): - def __init__(self, p: float = 0.5) -> None: - super(OnOffFilter, self).__init__() - self.p: float = p - - def forward(self, tensor: torch.Tensor) -> torch.Tensor: - - assert tensor.shape[1] == 1 - - tensor_clone = 2.0 * (tensor - self.p) - - temp_0: torch.Tensor = torch.where( - tensor_clone < 0.0, - -tensor_clone, - tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype), - ) - - temp_1: torch.Tensor = torch.where( - tensor_clone >= 0.0, - tensor_clone, - tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype), - ) - - new_tensor: torch.Tensor = torch.cat((temp_0, temp_1), dim=1) - - return new_tensor - - def __repr__(self) -> str: - return self.__class__.__name__ + "(p={0})".format(self.p) - - -if __name__ == "__main__": - pass diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Error.png b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Error.png deleted file mode 100644 index 5f6494d..0000000 Binary files a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Error.png and /dev/null differ diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Model_MNIST_A_199.pt.gz b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Model_MNIST_A_199.pt.gz deleted file mode 100644 index a5a59bc..0000000 Binary files a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Model_MNIST_A_199.pt.gz and /dev/null differ diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Parameter.py b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Parameter.py deleted file mode 100644 index 92fe247..0000000 --- a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Parameter.py +++ /dev/null @@ -1,164 +0,0 @@ -# MIT License -# Copyright 2022 University of Bremen -# -# Permission is hereby granted, free of charge, to any person obtaining -# a copy of this software and associated documentation files (the "Software"), -# to deal in the Software without restriction, including without limitation -# the rights to use, copy, modify, merge, publish, distribute, sublicense, -# and/or sell copies of the Software, and to permit persons to whom the -# Software is furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included -# in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, -# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR -# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR -# THE USE OR OTHER DEALINGS IN THE SOFTWARE. -# -# -# David Rotermund ( davrot@uni-bremen.de ) -# -# -# Release history: -# ================ -# 1.0.0 -- 01.05.2022: first release -# -# - -# %% -from dataclasses import dataclass, field -import numpy as np -import torch -import os - - -@dataclass -class Network: - """Parameters of the network. The details about - its layers and the number of output neurons.""" - - number_of_output_neurons: int = field(default=0) - forward_kernel_size: list[list[int]] = field(default_factory=list) - forward_neuron_numbers: list[list[int]] = field(default_factory=list) - strides: list[list[int]] = field(default_factory=list) - dilation: list[list[int]] = field(default_factory=list) - padding: list[list[int]] = field(default_factory=list) - is_pooling_layer: list[bool] = field(default_factory=list) - w_trainable: list[bool] = field(default_factory=list) - eps_xy_trainable: list[bool] = field(default_factory=list) - eps_xy_mean: list[bool] = field(default_factory=list) - - -@dataclass -class LearningParameters: - """Parameter required for training""" - - loss_coeffs_mse: float = field(default=0.5) - loss_coeffs_kldiv: float = field(default=1.0) - learning_rate_gamma_w: float = field(default=-1.0) - learning_rate_gamma_eps_xy: float = field(default=-1.0) - learning_rate_threshold_w: float = field(default=0.00001) - learning_rate_threshold_eps_xy: float = field(default=0.00001) - learning_active: bool = field(default=True) - weight_noise_amplitude: float = field(default=0.01) - eps_xy_intitial: float = field(default=0.1) - test_every_x_learning_steps: int = field(default=50) - test_during_learning: bool = field(default=True) - lr_scheduler_factor: float = field(default=0.75) - lr_scheduler_patience: int = field(default=10) - optimizer_name: str = field(default="Adam") - lr_schedule_name: str = field(default="ReduceLROnPlateau") - number_of_batches_for_one_update: int = field(default=1) - alpha_number_of_iterations: int = field(default=0) - overload_path: str = field(default="./Previous") - - -@dataclass -class Augmentation: - """Parameters used for data augmentation.""" - - crop_width_in_pixel: int = field(default=2) - flip_p: float = field(default=0.5) - jitter_brightness: float = field(default=0.5) - jitter_contrast: float = field(default=0.1) - jitter_saturation: float = field(default=0.1) - jitter_hue: float = field(default=0.15) - - -@dataclass -class ImageStatistics: - """(Statistical) information about the input. i.e. - mean values and the x and y size of the input""" - - mean: list[float] = field(default_factory=list) - the_size: list[int] = field(default_factory=list) - - -@dataclass -class Config: - """Master config class.""" - - # Sub classes - network_structure: Network = field(default_factory=Network) - learning_parameters: LearningParameters = field(default_factory=LearningParameters) - augmentation: Augmentation = field(default_factory=Augmentation) - image_statistics: ImageStatistics = field(default_factory=ImageStatistics) - - batch_size: int = field(default=500) - data_mode: str = field(default="") - - learning_step: int = field(default=0) - learning_step_max: int = field(default=10000) - - number_of_cpu_processes: int = field(default=-1) - - number_of_spikes: int = field(default=0) - cooldown_after_number_of_spikes: int = field(default=0) - - weight_path: str = field(default="./Weights/") - eps_xy_path: str = field(default="./EpsXY/") - data_path: str = field(default="./") - - reduction_cooldown: float = field(default=25.0) - epsilon_0: float = field(default=1.0) - - update_after_x_batch: float = field(default=1.0) - - def __post_init__(self) -> None: - """Post init determines the number of cores. - Creates the required directory and gives us an optimized - (for the amount of cores) batch size.""" - number_of_cpu_processes_temp = os.cpu_count() - - if self.number_of_cpu_processes < 1: - if number_of_cpu_processes_temp is None: - self.number_of_cpu_processes = 1 - else: - self.number_of_cpu_processes = number_of_cpu_processes_temp - - os.makedirs(self.weight_path, exist_ok=True) - os.makedirs(self.eps_xy_path, exist_ok=True) - os.makedirs(self.data_path, exist_ok=True) - - self.batch_size = ( - self.batch_size // self.number_of_cpu_processes - ) * self.number_of_cpu_processes - - self.batch_size = np.max((self.batch_size, self.number_of_cpu_processes)) - self.batch_size = int(self.batch_size) - - def get_epsilon_t(self): - """Generates the time series of the basic epsilon.""" - np_epsilon_t: np.ndarray = np.ones((self.number_of_spikes), dtype=np.float32) - np_epsilon_t[ - self.cooldown_after_number_of_spikes : self.number_of_spikes - ] /= self.reduction_cooldown - return torch.tensor(np_epsilon_t) - - def get_update_after_x_pattern(self): - """Tells us after how many pattern we need to update the weights.""" - return self.batch_size * self.update_after_x_batch diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/events.out.tfevents.1651328399.fedora.118340.0 b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/events.out.tfevents.1651328399.fedora.118340.0 deleted file mode 100644 index 2316e51..0000000 Binary files a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/events.out.tfevents.1651328399.fedora.118340.0 and /dev/null differ diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/info.md b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/info.md deleted file mode 100644 index c8a4090..0000000 --- a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/info.md +++ /dev/null @@ -1 +0,0 @@ -Performance reached (test data correct classifications): 89.82% \ No newline at end of file diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/plot.py b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/plot.py deleted file mode 100644 index 7b9ea58..0000000 --- a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/plot.py +++ /dev/null @@ -1,31 +0,0 @@ -import os - -os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" - -import numpy as np -import matplotlib.pyplot as plt -from tensorboard.backend.event_processing import event_accumulator - -filename: str = "events.out.tfevents.1651328399.fedora.118340.0" - -acc = event_accumulator.EventAccumulator(filename) -acc.Reload() - -# What is available? -# available_scalar = acc.Tags()["scalars"] -# print("Available Scalars") -# print(available_scalar) - -which_scalar: str = "Test Number Correct" -te = acc.Scalars(which_scalar) - -temp: list = [] -for te_item in te: - temp.append((te_item[1], te_item[2])) -temp_np = np.array(temp) - -plt.semilogy(temp_np[:, 0], (1.0 - (temp_np[:, 1] / 10000)) * 100) -plt.xlabel("Epochs") -plt.ylabel("Error [%]") -plt.savefig("Error.png") -plt.show() diff --git a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/run.py b/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/run.py deleted file mode 100644 index 8b6360d..0000000 --- a/DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/run.py +++ /dev/null @@ -1,203 +0,0 @@ -# %% -import torch -from Dataset import DatasetFashionMNIST -from Parameter import Config -import torchvision as tv # type: ignore - -# Some parameters - -cfg = Config() - -input_number_of_channel: int = 1 -input_dim_x: int = 24 -input_dim_y: int = 24 - -number_of_output_channels_conv1: int = 32 -number_of_output_channels_conv2: int = 64 -number_of_output_channels_flatten1: int = 576 -number_of_output_channels_full1: int = 10 - -kernel_size_conv1: tuple[int, int] = (5, 5) -kernel_size_pool1: tuple[int, int] = (2, 2) -kernel_size_conv2: tuple[int, int] = (5, 5) -kernel_size_pool2: tuple[int, int] = (2, 2) - -stride_conv1: tuple[int, int] = (1, 1) -stride_pool1: tuple[int, int] = (2, 2) -stride_conv2: tuple[int, int] = (1, 1) -stride_pool2: tuple[int, int] = (2, 2) - -padding_conv1: int = 0 -padding_pool1: int = 0 -padding_conv2: int = 0 -padding_pool2: int = 0 - -network = torch.nn.Sequential( - torch.nn.Conv2d( - in_channels=input_number_of_channel, - out_channels=number_of_output_channels_conv1, - kernel_size=kernel_size_conv1, - stride=stride_conv1, - padding=padding_conv1, - ), - torch.nn.ReLU(), - torch.nn.MaxPool2d( - kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1 - ), - torch.nn.Conv2d( - in_channels=number_of_output_channels_conv1, - out_channels=number_of_output_channels_conv2, - kernel_size=kernel_size_conv2, - stride=stride_conv2, - padding=padding_conv2, - ), - torch.nn.ReLU(), - torch.nn.MaxPool2d( - kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2 - ), - torch.nn.Flatten( - start_dim=1, - ), - torch.nn.Linear( - in_features=number_of_output_channels_flatten1, - out_features=number_of_output_channels_full1, - bias=True, - ), - torch.nn.Softmax(dim=1), -) -# %% -path_pattern: str = "./DATA_FASHION_MNIST/" -path_label: str = "./DATA_FASHION_MNIST/" - -dataset_train = DatasetFashionMNIST( - train=True, path_pattern=path_pattern, path_label=path_label -) -dataset_test = DatasetFashionMNIST( - train=False, path_pattern=path_pattern, path_label=path_label -) -cfg.image_statistics.mean = dataset_train.mean -# The basic size -cfg.image_statistics.the_size = [ - dataset_train.pattern_storage.shape[2], - dataset_train.pattern_storage.shape[3], -] -# Minus the stuff we cut away in the pattern filter -cfg.image_statistics.the_size[0] -= 2 * cfg.augmentation.crop_width_in_pixel -cfg.image_statistics.the_size[1] -= 2 * cfg.augmentation.crop_width_in_pixel - - -batch_size_train: int = 100 -batch_size_test: int = 100 - - -train_data_load = torch.utils.data.DataLoader( - dataset_train, batch_size=batch_size_train, shuffle=True -) - -test_data_load = torch.utils.data.DataLoader( - dataset_test, batch_size=batch_size_test, shuffle=False -) - -transforms_test: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.CenterCrop(size=cfg.image_statistics.the_size), -) -scripted_transforms_test = torch.jit.script(transforms_test) - -transforms_train: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.RandomCrop(size=cfg.image_statistics.the_size), - tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p), - tv.transforms.ColorJitter( - brightness=cfg.augmentation.jitter_brightness, - contrast=cfg.augmentation.jitter_contrast, - saturation=cfg.augmentation.jitter_saturation, - hue=cfg.augmentation.jitter_hue, - ), -) -scripted_transforms_train = torch.jit.script(transforms_train) -# %% -# The optimizer -optimizer = torch.optim.Adam(network.parameters(), lr=0.001) -# The LR Scheduler -lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.75) - -# %% -number_of_test_pattern: int = dataset_test.__len__() -number_of_train_pattern: int = dataset_train.__len__() - -number_of_epoch: int = 200 - -# %% -import time -from torch.utils.tensorboard import SummaryWriter - -tb = SummaryWriter() - -# %% -loss_function = torch.nn.CrossEntropyLoss() - -for epoch_id in range(0, number_of_epoch): - print(f"Epoch: {epoch_id}") - t_start: float = time.perf_counter() - - train_loss: float = 0.0 - train_correct: int = 0 - train_number: int = 0 - test_correct: int = 0 - test_number: int = 0 - - # Switch the network into training mode - network.train() - - # This runs in total for one epoch split up into mini-batches - for image, target in train_data_load: - - # Clean the gradient - optimizer.zero_grad() - - output = network(scripted_transforms_train(image)) - - loss = loss_function(output, target) - - train_loss += loss.item() - train_correct += (output.argmax(dim=1) == target).sum().numpy() - train_number += target.shape[0] - # Calculate backprop - loss.backward() - - # Update the parameter - optimizer.step() - - # Update the learning rate - lr_scheduler.step(train_loss) - - t_training: float = time.perf_counter() - - # Switch the network into evalution mode - network.eval() - with torch.no_grad(): - for image, target in test_data_load: - - output = network(scripted_transforms_test(image)) - - test_correct += (output.argmax(dim=1) == target).sum().numpy() - test_number += target.shape[0] - - t_testing = time.perf_counter() - - perfomance_test_correct: float = 100.0 * test_correct / test_number - perfomance_train_correct: float = 100.0 * train_correct / train_number - - tb.add_scalar("Train Loss", train_loss, epoch_id) - tb.add_scalar("Train Number Correct", train_correct, epoch_id) - tb.add_scalar("Test Number Correct", test_correct, epoch_id) - - print(f"Training: Loss={train_loss:.5f} Correct={perfomance_train_correct:.2f}%") - print(f"Testing: Correct={perfomance_test_correct:.2f}%") - print( - f"Time: Training={(t_training-t_start):.1f}sec, Testing={(t_testing-t_training):.1f}sec" - ) - torch.save(network, "Model_MNIST_A_" + str(epoch_id) + ".pt") - print() - -# %% -tb.close() diff --git a/DATA_FASHION_MNIST/convert.py b/DATA_FASHION_MNIST/convert.py deleted file mode 100644 index dc2e15b..0000000 --- a/DATA_FASHION_MNIST/convert.py +++ /dev/null @@ -1,161 +0,0 @@ -# MIT License -# Copyright 2022 University of Bremen -# -# Permission is hereby granted, free of charge, to any person obtaining -# a copy of this software and associated documentation files (the "Software"), -# to deal in the Software without restriction, including without limitation -# the rights to use, copy, modify, merge, publish, distribute, sublicense, -# and/or sell copies of the Software, and to permit persons to whom the -# Software is furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included -# in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, -# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR -# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR -# THE USE OR OTHER DEALINGS IN THE SOFTWARE. -# -# -# David Rotermund ( davrot@uni-bremen.de ) -# -# -# Release history: -# ================ -# 1.0.0 -- 01.05.2022: first release -# -# - -import numpy as np - -# [offset] [type] [value] [description] -# 0000 32 bit integer 0x00000801(2049) magic number (MSB first) -# 0004 32 bit integer 60000 number of items -# 0008 unsigned byte ?? label -# 0009 unsigned byte ?? label -# ........ -# xxxx unsigned byte ?? label -# The labels values are 0 to 9. - - -class ReadLabel: - """Class for reading the labels from an MNIST label file""" - - def __init__(self, filename): - self.filename: str = filename - self.data = self.read_from_file(filename) - - def read_from_file(self, filename): - int32_data = np.dtype(np.uint32) - int32_data = int32_data.newbyteorder(">") - file = open(filename, "rb") - - magic_flag = np.frombuffer(file.read(4), int32_data)[0] - - if magic_flag != 2049: - data = np.zeros(0) - number_of_elements = 0 - else: - number_of_elements = np.frombuffer(file.read(4), int32_data)[0] - - if number_of_elements < 1: - data = np.zeros(0) - else: - data = np.frombuffer(file.read(number_of_elements), dtype=np.uint8) - - file.close() - - return data - - -# [offset] [type] [value] [description] -# 0000 32 bit integer 0x00000803(2051) magic number -# 0004 32 bit integer 60000 number of images -# 0008 32 bit integer 28 number of rows -# 0012 32 bit integer 28 number of columns -# 0016 unsigned byte ?? pixel -# 0017 unsigned byte ?? pixel -# ........ -# xxxx unsigned byte ?? pixel -# Pixels are organized row-wise. -# Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black). - - -class ReadPicture: - """Class for reading the images from an MNIST image file""" - - def __init__(self, filename): - self.filename: str = filename - self.data = self.read_from_file(filename) - - def read_from_file(self, filename): - int32_data = np.dtype(np.uint32) - int32_data = int32_data.newbyteorder(">") - file = open(filename, "rb") - - magic_flag = np.frombuffer(file.read(4), int32_data)[0] - - if magic_flag != 2051: - data = np.zeros(0) - number_of_elements = 0 - else: - number_of_elements = np.frombuffer(file.read(4), int32_data)[0] - - if number_of_elements < 1: - data = np.zeros(0) - number_of_rows = 0 - else: - number_of_rows = np.frombuffer(file.read(4), int32_data)[0] - - if number_of_rows != 28: - data = np.zeros(0) - number_of_columns = 0 - else: - number_of_columns = np.frombuffer(file.read(4), int32_data)[0] - - if number_of_columns != 28: - data = np.zeros(0) - else: - data = np.frombuffer( - file.read(number_of_elements * number_of_rows * number_of_columns), - dtype=np.uint8, - ) - data = data.reshape(number_of_elements, number_of_columns, number_of_rows) - - file.close() - - return data - - -def proprocess_data_set(test_mode): - - if test_mode is True: - filename_out_pattern: str = "TestPatternStorage.npy" - filename_out_label: str = "TestLabelStorage.npy" - filename_in_image: str = "t10k-images-idx3-ubyte" - filename_in_label = "t10k-labels-idx1-ubyte" - else: - filename_out_pattern = "TrainPatternStorage.npy" - filename_out_label = "TrainLabelStorage.npy" - filename_in_image = "train-images-idx3-ubyte" - filename_in_label = "train-labels-idx1-ubyte" - - pictures = ReadPicture(filename_in_image) - labels = ReadLabel(filename_in_label) - - # Down to 0 ... 1.0 - max_value = np.max(pictures.data.astype(np.float32)) - d = np.float32(pictures.data.astype(np.float32) / max_value) - - label_storage = np.uint64(labels.data) - pattern_storage = d.astype(np.float32) - - np.save(filename_out_pattern, pattern_storage) - np.save(filename_out_label, label_storage) - - -proprocess_data_set(True) -proprocess_data_set(False) diff --git a/DATA_FASHION_MNIST/data_url.txt b/DATA_FASHION_MNIST/data_url.txt deleted file mode 100644 index 58ff44e..0000000 --- a/DATA_FASHION_MNIST/data_url.txt +++ /dev/null @@ -1,8 +0,0 @@ -https://github.com/zalandoresearch/fashion-mnist - -We need: -t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz - -Then -gzip -d *.gz -python convert.py