diff --git a/Dataset.py b/Dataset.py deleted file mode 100644 index 8808ddb..0000000 --- a/Dataset.py +++ /dev/null @@ -1,455 +0,0 @@ -# MIT License -# Copyright 2022 University of Bremen -# -# Permission is hereby granted, free of charge, to any person obtaining -# a copy of this software and associated documentation files (the "Software"), -# to deal in the Software without restriction, including without limitation -# the rights to use, copy, modify, merge, publish, distribute, sublicense, -# and/or sell copies of the Software, and to permit persons to whom the -# Software is furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included -# in all copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, -# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR -# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR -# THE USE OR OTHER DEALINGS IN THE SOFTWARE. -# -# -# David Rotermund ( davrot@uni-bremen.de ) -# -# -# Release history: -# ================ -# 1.0.0 -- 01.05.2022: first release -# -# - -from abc import ABC, abstractmethod -import torch -import numpy as np -import torchvision as tv # type: ignore -from Parameter import Config - - -class DatasetMaster(torch.utils.data.Dataset, ABC): - - path_label: str - label_storage: np.ndarray - pattern_storage: np.ndarray - number_of_pattern: int - mean: list[float] - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__() - - if train is True: - self.label_storage = np.load(path_label + "/TrainLabelStorage.npy") - else: - self.label_storage = np.load(path_label + "/TestLabelStorage.npy") - - if train is True: - self.pattern_storage = np.load(path_pattern + "/TrainPatternStorage.npy") - else: - self.pattern_storage = np.load(path_pattern + "/TestPatternStorage.npy") - - self.number_of_pattern = self.label_storage.shape[0] - - self.mean = [] - - def __len__(self) -> int: - return self.number_of_pattern - - # Get one pattern at position index - @abstractmethod - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - pass - - @abstractmethod - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - pass - - @abstractmethod - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - pass - - -class DatasetMNIST(DatasetMaster): - """Contstructor""" - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__(train, path_pattern, path_label) - - self.pattern_storage = np.ascontiguousarray( - self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32) - ) - - self.pattern_storage /= np.max(self.pattern_storage) - - mean = self.pattern_storage.mean(3).mean(2).mean(0) - self.mean = [*mean] - - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - - image = self.pattern_storage[index, 0:1, :, :] - target = int(self.label_storage[index]) - return torch.tensor(image), target - - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The test image comes in - 1. is center cropped - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.CenterCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - if cfg.augmentation.use_on_off_filter is True: - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - else: - gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps - - return gray - - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The training image comes in - 1. is cropped from a random position - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.RandomCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - if cfg.augmentation.use_on_off_filter is True: - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - else: - gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps - - return gray - - -class DatasetFashionMNIST(DatasetMaster): - """Contstructor""" - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__(train, path_pattern, path_label) - - self.pattern_storage = np.ascontiguousarray( - self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32) - ) - - self.pattern_storage /= np.max(self.pattern_storage) - - mean = self.pattern_storage.mean(3).mean(2).mean(0) - self.mean = [*mean] - - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - - image = self.pattern_storage[index, 0:1, :, :] - target = int(self.label_storage[index]) - return torch.tensor(image), target - - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The test image comes in - 1. is center cropped - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.CenterCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - if cfg.augmentation.use_on_off_filter is True: - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - else: - gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps - - return gray - - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The training image comes in - 1. is cropped from a random position - 2. on/off filteres - 3. returned. - - This is a 1 channel version (e.g. one gray channel). - """ - - assert len(cfg.image_statistics.mean) == 1 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.RandomCrop(size=cfg.image_statistics.the_size), - tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p), - tv.transforms.ColorJitter( - brightness=cfg.augmentation.jitter_brightness, - contrast=cfg.augmentation.jitter_contrast, - saturation=cfg.augmentation.jitter_saturation, - hue=cfg.augmentation.jitter_hue, - ), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - if cfg.augmentation.use_on_off_filter is True: - my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0]) - gray: torch.Tensor = my_on_off_filter( - pattern[:, 0:1, :, :], - ) - else: - gray = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps - - return gray - - -class DatasetCIFAR(DatasetMaster): - """Contstructor""" - - # Initialize - def __init__( - self, - train: bool = False, - path_pattern: str = "./", - path_label: str = "./", - ) -> None: - super().__init__(train, path_pattern, path_label) - - self.pattern_storage = np.ascontiguousarray( - np.moveaxis(self.pattern_storage.astype(dtype=np.float32), 3, 1) - ) - self.pattern_storage /= np.max(self.pattern_storage) - - mean = self.pattern_storage.mean(3).mean(2).mean(0) - self.mean = [*mean] - - def __getitem__(self, index: int) -> tuple[torch.Tensor, int]: - - image = self.pattern_storage[index, :, :, :] - target = int(self.label_storage[index]) - return torch.tensor(image), target - - def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The test image comes in - 1. is center cropped - 2. on/off filteres - 3. returned. - - This is a 3 channel version (e.g. r,g,b channels). - """ - - assert len(cfg.image_statistics.mean) == 3 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.CenterCrop(size=cfg.image_statistics.the_size), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - if cfg.augmentation.use_on_off_filter is True: - my_on_off_filter_r: OnOffFilter = OnOffFilter( - p=cfg.image_statistics.mean[0] - ) - my_on_off_filter_g: OnOffFilter = OnOffFilter( - p=cfg.image_statistics.mean[1] - ) - my_on_off_filter_b: OnOffFilter = OnOffFilter( - p=cfg.image_statistics.mean[2] - ) - r: torch.Tensor = my_on_off_filter_r( - pattern[:, 0:1, :, :], - ) - g: torch.Tensor = my_on_off_filter_g( - pattern[:, 1:2, :, :], - ) - b: torch.Tensor = my_on_off_filter_b( - pattern[:, 2:3, :, :], - ) - else: - r = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps - g = pattern[:, 1:2, :, :] + torch.finfo(torch.float32).eps - b = pattern[:, 2:3, :, :] + torch.finfo(torch.float32).eps - - new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1) - return new_tensor - - def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor: - """0. The training image comes in - 1. is cropped from a random position - 2. is randomly horizontally flipped - 3. is randomly color jitteres - 4. on/off filteres - 5. returned. - - This is a 3 channel version (e.g. r,g,b channels). - """ - assert len(cfg.image_statistics.mean) == 3 - assert len(cfg.image_statistics.the_size) == 2 - assert cfg.image_statistics.the_size[0] > 0 - assert cfg.image_statistics.the_size[1] > 0 - - # Transformation chain - my_transforms: torch.nn.Sequential = torch.nn.Sequential( - tv.transforms.RandomCrop(size=cfg.image_statistics.the_size), - tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p), - tv.transforms.ColorJitter( - brightness=cfg.augmentation.jitter_brightness, - contrast=cfg.augmentation.jitter_contrast, - saturation=cfg.augmentation.jitter_saturation, - hue=cfg.augmentation.jitter_hue, - ), - ) - scripted_transforms = torch.jit.script(my_transforms) - - # Preprocess the input data - pattern = scripted_transforms(pattern) - - # => On/Off - if cfg.augmentation.use_on_off_filter is True: - my_on_off_filter_r: OnOffFilter = OnOffFilter( - p=cfg.image_statistics.mean[0] - ) - my_on_off_filter_g: OnOffFilter = OnOffFilter( - p=cfg.image_statistics.mean[1] - ) - my_on_off_filter_b: OnOffFilter = OnOffFilter( - p=cfg.image_statistics.mean[2] - ) - r: torch.Tensor = my_on_off_filter_r( - pattern[:, 0:1, :, :], - ) - g: torch.Tensor = my_on_off_filter_g( - pattern[:, 1:2, :, :], - ) - b: torch.Tensor = my_on_off_filter_b( - pattern[:, 2:3, :, :], - ) - else: - r = pattern[:, 0:1, :, :] + torch.finfo(torch.float32).eps - g = pattern[:, 1:2, :, :] + torch.finfo(torch.float32).eps - b = pattern[:, 2:3, :, :] + torch.finfo(torch.float32).eps - - new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1) - return new_tensor - - -class OnOffFilter(torch.nn.Module): - def __init__(self, p: float = 0.5) -> None: - super(OnOffFilter, self).__init__() - self.p: float = p - - def forward(self, tensor: torch.Tensor) -> torch.Tensor: - - assert tensor.shape[1] == 1 - - tensor_clone = 2.0 * (tensor - self.p) - - temp_0: torch.Tensor = torch.where( - tensor_clone < 0.0, - -tensor_clone, - tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype), - ) - - temp_1: torch.Tensor = torch.where( - tensor_clone >= 0.0, - tensor_clone, - tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype), - ) - - new_tensor: torch.Tensor = torch.cat((temp_0, temp_1), dim=1) - - return new_tensor - - def __repr__(self) -> str: - return self.__class__.__name__ + "(p={0})".format(self.p) - - -if __name__ == "__main__": - pass