diff --git a/Parameter.py b/Parameter.py index e8d63ea..61a9346 100644 --- a/Parameter.py +++ b/Parameter.py @@ -71,6 +71,7 @@ class LearningParameters: learning_rate_threshold_eps_xy: float = field(default=0.00001) lr_schedule_name: str = field(default="ReduceLROnPlateau") + lr_scheduler_use_performance: bool = field(default=True) lr_scheduler_factor_w: float = field(default=0.75) lr_scheduler_patience_w: int = field(default=-1) @@ -133,11 +134,12 @@ class Config: number_of_cpu_processes: int = field(default=-1) number_of_spikes: int = field(default=0) - cooldown_after_number_of_spikes: int = field(default=0) + cooldown_after_number_of_spikes: int = field(default=-1) weight_path: str = field(default="./Weights/") eps_xy_path: str = field(default="./EpsXY/") data_path: str = field(default="./") + results_path: str = field(default="./Results") reduction_cooldown: float = field(default=25.0) epsilon_0: float = field(default=1.0) @@ -159,6 +161,7 @@ class Config: os.makedirs(self.weight_path, exist_ok=True) os.makedirs(self.eps_xy_path, exist_ok=True) os.makedirs(self.data_path, exist_ok=True) + os.makedirs(self.results_path, exist_ok=True) self.batch_size = ( self.batch_size // self.number_of_cpu_processes @@ -170,9 +173,12 @@ class Config: def get_epsilon_t(self): """Generates the time series of the basic epsilon.""" np_epsilon_t: np.ndarray = np.ones((self.number_of_spikes), dtype=np.float32) - np_epsilon_t[ - self.cooldown_after_number_of_spikes : self.number_of_spikes - ] /= self.reduction_cooldown + if (self.cooldown_after_number_of_spikes < self.number_of_spikes) and ( + self.cooldown_after_number_of_spikes >= 0 + ): + np_epsilon_t[ + self.cooldown_after_number_of_spikes : self.number_of_spikes + ] /= self.reduction_cooldown return torch.tensor(np_epsilon_t) def get_update_after_x_pattern(self): diff --git a/SbS.py b/SbS.py index 70c5a1f..df50b28 100644 --- a/SbS.py +++ b/SbS.py @@ -122,7 +122,7 @@ class SbS(torch.nn.Module): self.initialize_epsilon_xy(epsilon_xy_intitial) - self.epsilon_0 = torch.tensor(epsilon_0, dtype=torch.float64) + self.epsilon_0 = torch.tensor(epsilon_0, dtype=torch.float32) self.number_of_cpu_processes = torch.tensor( number_of_cpu_processes, dtype=torch.int64 @@ -130,7 +130,7 @@ class SbS(torch.nn.Module): self.number_of_spikes = torch.tensor(number_of_spikes, dtype=torch.int64) - self.epsilon_t = epsilon_t.type(dtype=torch.float64) + self.epsilon_t = epsilon_t.type(dtype=torch.float32) self.initialize_weights( is_pooling_layer=is_pooling_layer, @@ -155,7 +155,7 @@ class SbS(torch.nn.Module): assert value is not None assert torch.is_tensor(value) is True assert value.dim() == 4 - assert value.dtype == torch.float64 + assert value.dtype == torch.float32 if self._epsilon_xy_exists is False: self._epsilon_xy = torch.nn.parameter.Parameter( value.detach().clone(memory_format=torch.contiguous_format), @@ -176,7 +176,7 @@ class SbS(torch.nn.Module): assert value is not None assert torch.is_tensor(value) is True assert torch.numel(value) == 1 - assert value.dtype == torch.float64 + assert value.dtype == torch.float32 assert value.item() > 0 self._epsilon_0 = value.detach().clone(memory_format=torch.contiguous_format) self._epsilon_0.requires_grad_(False) @@ -190,7 +190,7 @@ class SbS(torch.nn.Module): assert value is not None assert torch.is_tensor(value) is True assert value.dim() == 1 - assert value.dtype == torch.float64 + assert value.dtype == torch.float32 self._epsilon_t = value.detach().clone(memory_format=torch.contiguous_format) self._epsilon_t.requires_grad_(False) @@ -206,9 +206,9 @@ class SbS(torch.nn.Module): assert value is not None assert torch.is_tensor(value) is True assert value.dim() == 2 - assert value.dtype == torch.float64 + assert value.dtype == torch.float32 temp: torch.Tensor = value.detach().clone(memory_format=torch.contiguous_format) - temp /= temp.sum(dim=0, keepdim=True, dtype=torch.float64) + temp /= temp.sum(dim=0, keepdim=True, dtype=torch.float32) if self._weights_exists is False: self._weights = torch.nn.parameter.Parameter( temp, @@ -402,7 +402,7 @@ class SbS(torch.nn.Module): assert input is not None assert torch.is_tensor(input) is True assert input.dim() == 4 - assert input.dtype == torch.float64 + assert input.dtype == torch.float32 # Are we happy with the rest of the network? assert self._epsilon_xy_exists is True @@ -499,7 +499,7 @@ class SbS(torch.nn.Module): torch.unsqueeze( torch.unsqueeze( torch.unsqueeze( - torch.arange(0, int(value[0]), dtype=torch.float64), + torch.arange(0, int(value[0]), dtype=torch.float32), 1, ), 0, @@ -516,7 +516,7 @@ class SbS(torch.nn.Module): torch.unsqueeze( torch.unsqueeze( torch.unsqueeze( - torch.arange(0, int(value[1]), dtype=torch.float64), + torch.arange(0, int(value[1]), dtype=torch.float32), 0, ), 0, @@ -537,7 +537,7 @@ class SbS(torch.nn.Module): assert torch.numel(noise_amplitude) == 1 assert noise_amplitude.item() >= 0 - assert noise_amplitude.dtype == torch.float64 + assert noise_amplitude.dtype == torch.float32 assert self._number_of_neurons is not None assert self._number_of_input_neurons is not None @@ -550,7 +550,7 @@ class SbS(torch.nn.Module): int(self._number_of_input_neurons), int(self._number_of_neurons), ), - dtype=torch.float64, + dtype=torch.float32, ) torch.nn.init.uniform_(weights, a=1.0, b=(1.0 + noise_amplitude.item())) @@ -571,7 +571,7 @@ class SbS(torch.nn.Module): int(self._number_of_neurons), int(self._number_of_neurons), ), - dtype=torch.float64, + dtype=torch.float32, ) for i in range(0, int(self._number_of_neurons)): @@ -593,7 +593,7 @@ class SbS(torch.nn.Module): weights = self._make_pooling_weights() else: weights = self._initial_random_weights( - torch.tensor(noise_amplitude, dtype=torch.float64) + torch.tensor(noise_amplitude, dtype=torch.float32) ) weights = weights.moveaxis(-1, 0).moveaxis(-1, 1) @@ -628,7 +628,7 @@ class SbS(torch.nn.Module): int(self._kernel_size[1]), ), eps_xy_intitial, - dtype=torch.float64, + dtype=torch.float32, ) self.epsilon_xy = eps_xy_temp @@ -660,7 +660,7 @@ class SbS(torch.nn.Module): fill_value: float = float(self._epsilon_xy.data.mean()) self._epsilon_xy.data = torch.full_like( - self._epsilon_xy.data, fill_value, dtype=torch.float64 + self._epsilon_xy.data, fill_value, dtype=torch.float32 ) def threshold_epsilon_xy(self, threshold: float) -> None: @@ -688,9 +688,9 @@ class SbS(torch.nn.Module): temp: torch.Tensor = ( self._weights.data.detach() .clone(memory_format=torch.contiguous_format) - .type(dtype=torch.float64) + .type(dtype=torch.float32) ) - temp /= temp.sum(dim=0, keepdim=True, dtype=torch.float64) + temp /= temp.sum(dim=0, keepdim=True, dtype=torch.float32) self._weights.data = temp def threshold_weights(self, threshold: float) -> None: @@ -708,11 +708,11 @@ class FunctionalSbS(torch.autograd.Function): @staticmethod def forward( # type: ignore ctx, - input_float64: torch.Tensor, - epsilon_xy_float64: torch.Tensor, - epsilon_0_float64: torch.Tensor, - epsilon_t_float64: torch.Tensor, - weights_float64: torch.Tensor, + input: torch.Tensor, + epsilon_xy: torch.Tensor, + epsilon_0: torch.Tensor, + epsilon_t: torch.Tensor, + weights: torch.Tensor, kernel_size: torch.Tensor, stride: torch.Tensor, dilation: torch.Tensor, @@ -724,11 +724,7 @@ class FunctionalSbS(torch.autograd.Function): alpha_number_of_iterations: torch.Tensor, ) -> torch.Tensor: - input = input_float64.type(dtype=torch.float32) - epsilon_xy = epsilon_xy_float64.type(dtype=torch.float32) - weights = weights_float64.type(dtype=torch.float32) - epsilon_0 = epsilon_0_float64.type(dtype=torch.float32) - epsilon_t = epsilon_t_float64.type(dtype=torch.float32) + torch.set_default_dtype(torch.float32) assert input.dim() == 4 assert torch.numel(kernel_size) == 2 @@ -1097,7 +1093,7 @@ class FunctionalSbS(torch.autograd.Function): ) alpha_dynamic = alpha_temp.sum(dim=1, keepdim=True) - alpha_dynamic += torch.finfo(torch.float32).eps * 1000 + alpha_dynamic += 1e-20 # Alpha normalization alpha_dynamic /= alpha_dynamic.sum(dim=3, keepdim=True).sum( @@ -1114,13 +1110,11 @@ class FunctionalSbS(torch.autograd.Function): # Save the necessary data for the backward pass # ############################################################ - output = output.type(dtype=torch.float64) - ctx.save_for_backward( input_convolved, epsilon_xy_convolved, - epsilon_0_float64, - weights_float64, + epsilon_0, + weights, output, kernel_size, stride, @@ -1136,8 +1130,8 @@ class FunctionalSbS(torch.autograd.Function): # Get the variables back ( - input_float32, - epsilon_xy_float32, + input, + epsilon_xy, epsilon_0, weights, output, @@ -1148,14 +1142,14 @@ class FunctionalSbS(torch.autograd.Function): input_size, ) = ctx.saved_tensors - input = input_float32.type(dtype=torch.float64) - input /= input.sum(dim=1, keepdim=True, dtype=torch.float64) - epsilon_xy = epsilon_xy_float32.type(dtype=torch.float64) + torch.set_default_dtype(torch.float32) + + input /= input.sum(dim=1, keepdim=True, dtype=torch.float32) # For debugging: - # print( - # f"S: O: {output.min().item():e} {output.max().item():e} I: {input.min().item():e} {input.max().item():e} G: {grad_output.min().item():e} {grad_output.max().item():e}" - # ) +# print( +# f"S: O: {output.min().item():e} {output.max().item():e} I: {input.min().item():e} {input.max().item():e} G: {grad_output.min().item():e} {grad_output.max().item():e}" +# ) epsilon_0_float: float = epsilon_0.item() @@ -1172,21 +1166,21 @@ class FunctionalSbS(torch.autograd.Function): backprop_bigr: torch.Tensor = backprop_r.sum(axis=2) - temp: torch.Tensor = input / backprop_bigr**2 + temp: torch.Tensor = input / (backprop_bigr**2 + 1e-20) backprop_f: torch.Tensor = output.unsqueeze(1) * temp.unsqueeze(2) torch.nan_to_num( - backprop_f, out=backprop_f, nan=1e300, posinf=1e300, neginf=-1e300 + backprop_f, out=backprop_f, nan=1e30, posinf=1e30, neginf=-1e30 ) - torch.clip(backprop_f, out=backprop_f, min=-1e300, max=1e300) + torch.clip(backprop_f, out=backprop_f, min=-1e30, max=1e30) - tempz: torch.Tensor = 1.0 / backprop_bigr + tempz: torch.Tensor = 1.0 / (backprop_bigr + 1e-20) backprop_z: torch.Tensor = backprop_r * tempz.unsqueeze(2) torch.nan_to_num( - backprop_z, out=backprop_z, nan=1e300, posinf=1e300, neginf=-1e300 + backprop_z, out=backprop_z, nan=1e30, posinf=1e30, neginf=-1e30 ) - torch.clip(backprop_z, out=backprop_z, min=-1e300, max=1e300) + torch.clip(backprop_z, out=backprop_z, min=-1e30, max=1e30) result_omega: torch.Tensor = backprop_bigr.unsqueeze(2) * grad_output.unsqueeze( 1 @@ -1211,9 +1205,9 @@ class FunctionalSbS(torch.autograd.Function): grad_weights = result_omega.sum(0).sum(-1).sum(-1) torch.nan_to_num( - grad_weights, out=grad_weights, nan=1e300, posinf=1e300, neginf=-1e300 + grad_weights, out=grad_weights, nan=1e30, posinf=1e30, neginf=-1e30 ) - torch.clip(grad_weights, out=grad_weights, min=-1e300, max=1e300) + torch.clip(grad_weights, out=grad_weights, min=-1e30, max=1e30) grad_input = torch.nn.functional.fold( torch.nn.functional.unfold( @@ -1230,9 +1224,9 @@ class FunctionalSbS(torch.autograd.Function): stride=stride, ) torch.nan_to_num( - grad_input, out=grad_input, nan=1e300, posinf=1e300, neginf=-1e300 + grad_input, out=grad_input, nan=1e30, posinf=1e30, neginf=-1e30 ) - torch.clip(grad_input, out=grad_input, min=-1e300, max=1e300) + torch.clip(grad_input, out=grad_input, min=-1e30, max=1e30) grad_eps_xy_temp = torch.nn.functional.fold( result_eps_xy.moveaxis(0, -1) @@ -1260,9 +1254,9 @@ class FunctionalSbS(torch.autograd.Function): .contiguous(memory_format=torch.contiguous_format) ) torch.nan_to_num( - grad_eps_xy, out=grad_eps_xy, nan=1e300, posinf=1e300, neginf=-1e300 + grad_eps_xy, out=grad_eps_xy, nan=1e30, posinf=1e30, neginf=-1e30 ) - torch.clip(grad_eps_xy, out=grad_eps_xy, min=-1e300, max=1e300) + torch.clip(grad_eps_xy, out=grad_eps_xy, min=-1e30, max=1e30) grad_epsilon_0 = None grad_epsilon_t = None diff --git a/learn_it.py b/learn_it.py index 5983b6c..a3cd228 100644 --- a/learn_it.py +++ b/learn_it.py @@ -56,6 +56,8 @@ from torch.utils.tensorboard import SummaryWriter tb = SummaryWriter() +torch.set_default_dtype(torch.float32) + ####################################################################### # We want to log what is going on into a file and screen # ####################################################################### @@ -191,7 +193,7 @@ for id in range(0, len(network)): if os.path.exists(filename) is True: network[id].weights = torch.tensor( np.load(filename), - dtype=torch.float64, + dtype=torch.float32, ) wf[id] = np.load(filename) @@ -206,7 +208,7 @@ for id in range(0, len(network)): if os.path.exists(filename) is True: network[id].epsilon_xy = torch.tensor( np.load(filename), - dtype=torch.float64, + dtype=torch.float32, ) eps_xy[id] = np.load(filename) @@ -225,7 +227,7 @@ for id in range(0, len(network)): if len(file_to_load) == 1: network[id].weights = torch.tensor( np.load(file_to_load[0]), - dtype=torch.float64, + dtype=torch.float32, ) wf[id] = np.load(file_to_load[0]) logging.info(f"File used: {file_to_load[0]}") @@ -243,7 +245,7 @@ for id in range(0, len(network)): if len(file_to_load) == 1: network[id].epsilon_xy = torch.tensor( np.load(file_to_load[0]), - dtype=torch.float64, + dtype=torch.float32, ) eps_xy[id] = np.load(file_to_load[0]) logging.info(f"File used: {file_to_load[0]}") @@ -346,7 +348,7 @@ with torch.no_grad(): h_collection = [] h_collection.append( the_dataset_train.pattern_filter_train(h_x, cfg).type( - dtype=torch.float64 + dtype=torch.float32 ) ) for id in range(0, len(network)): @@ -365,21 +367,21 @@ with torch.no_grad(): target_one_hot = ( target_one_hot.unsqueeze(2) .unsqueeze(2) - .type(dtype=torch.float64) + .type(dtype=torch.float32) ) - # through the loss functions - h_y1 = torch.log(h_collection[-1]) - h_y2 = torch.nan_to_num(h_y1, nan=0.0, posinf=0.0, neginf=0.0) + h_y1 = torch.log(h_collection[-1] + 1e-20) my_loss: torch.Tensor = ( ( torch.nn.functional.mse_loss( - h_collection[-1], target_one_hot, reduction="none" + h_collection[-1], + target_one_hot, + reduction="none", ) * cfg.learning_parameters.loss_coeffs_mse + torch.nn.functional.kl_div( - h_y2, target_one_hot, reduction="none" + h_y1, target_one_hot + 1e-20, reduction="none" ) * cfg.learning_parameters.loss_coeffs_kldiv ) @@ -392,6 +394,7 @@ with torch.no_grad(): time_1: float = time.perf_counter() my_loss.backward() + my_loss_float = my_loss.item() time_2: float = time.perf_counter() @@ -447,7 +450,7 @@ with torch.no_grad(): network[id].norm_weights() else: network[id].weights = torch.tensor( - wf[id], dtype=torch.float64 + wf[id], dtype=torch.float32 ) if cfg.network_structure.eps_xy_trainable[id] is True: @@ -458,7 +461,7 @@ with torch.no_grad(): network[id].mean_epsilon_xy() else: network[id].epsilon_xy = torch.tensor( - eps_xy[id], dtype=torch.float64 + eps_xy[id], dtype=torch.float32 ) if cfg.network_structure.w_trainable[id] is True: @@ -504,13 +507,18 @@ with torch.no_grad(): # Let the torch learning rate scheduler update the # learning rates of the optimiers if cfg.learning_parameters.lr_scheduler_patience_w > 0: - lr_scheduler_wf.step(my_loss_for_batch) - if cfg.learning_parameters.lr_scheduler_patience_eps_xy > 0: - lr_scheduler_eps.step(my_loss_for_batch) + if cfg.learning_parameters.lr_scheduler_use_performance is True: + lr_scheduler_wf.step(100.0 - performance) + else: + lr_scheduler_wf.step(my_loss_for_batch) - tb.add_scalar( - "Train Error", 100.0 - performance, cfg.learning_step - ) + if cfg.learning_parameters.lr_scheduler_patience_eps_xy > 0: + if cfg.learning_parameters.lr_scheduler_use_performance is True: + lr_scheduler_eps.step(100.0 - performance) + else: + lr_scheduler_eps.step(my_loss_for_batch) + + tb.add_scalar("Train Error", 100.0 - performance, cfg.learning_step) tb.add_scalar("Train Loss", my_loss_for_batch, cfg.learning_step) tb.add_scalar( "Learning Rate Scale WF", @@ -568,7 +576,7 @@ with torch.no_grad(): h_h: torch.Tensor = network( the_dataset_test.pattern_filter_test(h_x, cfg).type( - dtype=torch.float64 + dtype=torch.float32 ) ) diff --git a/test_all.sh b/test_all.sh new file mode 100644 index 0000000..587fbfc --- /dev/null +++ b/test_all.sh @@ -0,0 +1,6 @@ +#!/bin/bash +for i in $(seq 1 1 999) +do + echo $i + /home/davrot/P3.10/bin/python3 test_it.py mnist.json $i +done \ No newline at end of file diff --git a/test_it.py b/test_it.py index 0f939f5..e4c085b 100644 --- a/test_it.py +++ b/test_it.py @@ -182,7 +182,7 @@ for id in range(0, len(network)): if len(file_to_load) == 1: network[id].weights = torch.tensor( np.load(file_to_load[0]), - dtype=torch.float64, + dtype=torch.float32, ) wf[id] = np.load(file_to_load[0]) logging.info(f"File used: {file_to_load[0]}") @@ -200,7 +200,7 @@ for id in range(0, len(network)): if len(file_to_load) == 1: network[id].epsilon_xy = torch.tensor( np.load(file_to_load[0]), - dtype=torch.float64, + dtype=torch.float32, ) eps_xy[id] = np.load(file_to_load[0]) logging.info(f"File used: {file_to_load[0]}") @@ -219,7 +219,7 @@ for id in range(0, len(network)): if os.path.exists(filename) is True: network[id].weights = torch.tensor( np.load(filename), - dtype=torch.float64, + dtype=torch.float32, ) wf[id] = np.load(filename) @@ -234,7 +234,7 @@ for id in range(0, len(network)): if os.path.exists(filename) is True: network[id].epsilon_xy = torch.tensor( np.load(filename), - dtype=torch.float64, + dtype=torch.float32, ) eps_xy[id] = np.load(filename) @@ -256,7 +256,7 @@ with torch.no_grad(): time_0 = time.perf_counter() h_h: torch.Tensor = network( - the_dataset_test.pattern_filter_test(h_x, cfg).type(dtype=torch.float64) + the_dataset_test.pattern_filter_test(h_x, cfg).type(dtype=torch.float32) ) test_correct += (h_h.argmax(dim=1).squeeze() == h_x_labels).sum().numpy() @@ -271,6 +271,8 @@ with torch.no_grad(): f" with {performance/100:^6.2%} \t Time used: {time_measure_a:^6.2f}sec" ) ) + np_performance = np.array(performance) + np.save(f"{cfg.results_path}/{cfg.learning_step}.npy", np_performance) # %%