diff --git a/get_perf.py b/get_perf.py index 667a0d8..f3a822e 100644 --- a/get_perf.py +++ b/get_perf.py @@ -1,47 +1,47 @@ import os - os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" -import matplotlib.pyplot as plt + +which_scalar = "Test Error" from tensorboard.backend.event_processing import event_accumulator import numpy as np -import json -from jsmin import jsmin import glob -# ------------------------------- +log_paths: str = "Log*" +log_paths_list = glob.glob(log_paths) +assert len(log_paths_list) > 0 -filename:str = "def.json" -with open(filename) as json_file: - minified = jsmin(json_file.read()) -data = json.loads(minified) +for path in log_paths_list: + print(path) + temp = path.split("_") + if len(temp) == 2: + parameter:str | None = temp[-1] + else: + parameter = None + # ---------------------- + temp = glob.glob(path) + assert len(temp) == 1 + acc = event_accumulator.EventAccumulator(path) + acc.Reload() -# ------------------------------- + # Check if the requested scalar exists + available_scalar = acc.Tags()["scalars"] + # available_histograms = acc.Tags()["histograms"] + available_scalar.index(which_scalar) + te = acc.Scalars(which_scalar) -path_runs: str = "./Log/*" + np_temp = np.zeros((len(te), 2)) -temp = glob.glob(path_runs) -assert len(temp) == 1 -path = temp[0] + for id in range(0, len(te)): + np_temp[id, 0] = te[id][1] + np_temp[id, 1] = te[id][2] + print(np_temp) - -acc = event_accumulator.EventAccumulator(path) -acc.Reload() - -available_scalar = acc.Tags()["scalars"] -available_histograms = acc.Tags()["histograms"] - -which_scalar = "Test Error" -te = acc.Scalars(which_scalar) - -temp = [] -for te_item in te: - temp.append((te_item[1], te_item[2])) -temp = np.array(temp) - -print(temp) -np.save(f"test_error.npy", temp) + if parameter is not None: + np.save(f"result_{parameter}.npy", np_temp) + else: + np.save(f"result.npy", np_temp) diff --git a/train_it.py b/train_it.py index 6cab3c2..341f0b9 100644 --- a/train_it.py +++ b/train_it.py @@ -30,8 +30,10 @@ from network.loop_train_test import ( run_lr_scheduler, loop_test_reconstruction, ) + from network.SbSReconstruction import SbSReconstruction from network.InputSpikeImage import InputSpikeImage +from network.SbSLayer import SbSLayer from torch.utils.tensorboard import SummaryWriter @@ -155,6 +157,8 @@ if order_id is not None: if isinstance(network[0], InputSpikeImage) is True: network[0].number_of_spikes = number_of_spikes_in_input_layer + if isinstance(network[0], SbSLayer) is True: + network[0]._number_of_spikes = number_of_spikes_in_input_layer last_test_performance: float = -1.0 with torch.no_grad():