Update README.md

This commit is contained in:
David Rotermund 2023-01-05 13:27:44 +01:00 committed by GitHub
parent b18a999cbf
commit 7dd4bc72cd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

384
README.md
View file

@ -20,391 +20,9 @@ It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you
# C++ # C++
It works without compiling the C++ modules. However it is 10x slower.
You need to modify the Makefile in the C++ directory to your Python installation. You need to modify the Makefile in the C++ directory to your Python installation.
In addition yoir Python installation needs the PyBind11 package installed. You might want to perform a In addition yor Python installation needs the PyBind11 package installed. You might want to perform a
pip install pybind11 pip install pybind11
The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile. The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile.
The SbS.py autodetectes if the required C++ .so modules are in the same directory as the SbS.py file.
# SbS layer class
## Variables
```
epsilon_xy
```
```
epsilon_0
```
```
epsilon_t
```
```
weights
```
```
kernel_size
```
```
stride
```
```
dilation
```
```
padding
```
```
output_size
```
```
number_of_spikes
```
```
number_of_cpu_processes
```
```
number_of_neurons
```
```
number_of_input_neurons
```
```
h_initial
```
```
alpha_number_of_iterations
```
## Constructor
```
def __init__(
self,
number_of_input_neurons: int,
number_of_neurons: int,
input_size: list[int],
forward_kernel_size: list[int],
number_of_spikes: int,
epsilon_t: torch.Tensor,
epsilon_xy_intitial: float = 0.1,
epsilon_0: float = 1.0,
weight_noise_amplitude: float = 0.01,
is_pooling_layer: bool = False,
strides: list[int] = [1, 1],
dilation: list[int] = [0, 0],
padding: list[int] = [0, 0],
alpha_number_of_iterations: int = 0,
number_of_cpu_processes: int = 1,
) -> None:
```
## Methods
```
def initialize_weights(
self,
is_pooling_layer: bool = False,
noise_amplitude: float = 0.01,
) -> None:
```
For the generation of the initital weights. Switches between normal initial random weights and pooling weights.
---
```
def initialize_epsilon_xy(
self,
eps_xy_intitial: float,
) -> None:
```
Creates initial epsilon xy matrices.
---
```
def set_h_init_to_uniform(self) -> None:
```
---
```
def backup_epsilon_xy(self) -> None:
def restore_epsilon_xy(self) -> None:
def backup_weights(self) -> None:
def restore_weights(self) -> None:
```
---
```
def threshold_epsilon_xy(self, threshold: float) -> None:
def threshold_weights(self, threshold: float) -> None:
```
---
```
def mean_epsilon_xy(self) -> None:
```
---
```
def norm_weights(self) -> None:
```
# Parameters in JSON file
```
data_mode: str = field(default="")
```
```
data_path: str = field(default="./")
```
```
batch_size: int = field(default=500)
```
```
learning_step: int = field(default=0)
```
```
learning_step_max: int = field(default=10000)
```
```
number_of_cpu_processes: int = field(default=-1)
```
```
number_of_spikes: int = field(default=0)
```
```
cooldown_after_number_of_spikes: int = field(default=0)
```
```
weight_path: str = field(default="./Weights/")
```
```
eps_xy_path: str = field(default="./EpsXY/")
```
```
reduction_cooldown: float = field(default=25.0)
```
```
epsilon_0: float = field(default=1.0)
```
```
update_after_x_batch: float = field(default=1.0)
```
## network_structure (required!)
Parameters of the network. The details about its layers and the number of output neurons.
```
number_of_output_neurons: int = field(default=0)
```
```
forward_neuron_numbers: list[list[int]] = field(default_factory=list)
```
```
is_pooling_layer: list[bool] = field(default_factory=list)
```
```
forward_kernel_size: list[list[int]] = field(default_factory=list)
```
```
strides: list[list[int]] = field(default_factory=list)
```
```
dilation: list[list[int]] = field(default_factory=list)
```
```
padding: list[list[int]] = field(default_factory=list)
```
```
w_trainable: list[bool] = field(default_factory=list)
```
```
eps_xy_trainable: list[bool] = field(default_factory=list)
```
```
eps_xy_mean: list[bool] = field(default_factory=list)
```
## learning_parameters
Parameter required for training
```
learning_active: bool = field(default=True)
```
```
loss_coeffs_mse: float = field(default=0.5)
```
```
loss_coeffs_kldiv: float = field(default=1.0)
```
```
optimizer_name: str = field(default="Adam")
```
```
learning_rate_gamma_w: float = field(default=-1.0)
```
```
learning_rate_gamma_eps_xy: float = field(default=-1.0)
```
```
learning_rate_threshold_w: float = field(default=0.00001)
```
```
learning_rate_threshold_eps_xy: float = field(default=0.00001)
```
```
lr_schedule_name: str = field(default="ReduceLROnPlateau")
```
```
lr_scheduler_factor_w: float = field(default=0.75)
```
```
lr_scheduler_patience_w: int = field(default=-1)
```
```
lr_scheduler_factor_eps_xy: float = field(default=0.75)
```
```
lr_scheduler_patience_eps_xy: int = field(default=-1)
```
```
number_of_batches_for_one_update: int = field(default=1)
```
```
overload_path: str = field(default="./Previous")
```
```
weight_noise_amplitude: float = field(default=0.01)
```
```
eps_xy_intitial: float = field(default=0.1)
```
```
test_every_x_learning_steps: int = field(default=50)
```
```
test_during_learning: bool = field(default=True)
```
```
alpha_number_of_iterations: int = field(default=0)
```
## augmentation
Parameters used for data augmentation.
```
crop_width_in_pixel: int = field(default=2)
```
```
flip_p: float = field(default=0.5)
```
```
jitter_brightness: float = field(default=0.5)
```
```
jitter_contrast: float = field(default=0.1)
```
```
jitter_saturation: float = field(default=0.1)
```
```
jitter_hue: float = field(default=0.15)
```
```
use_on_off_filter: bool = field(default=True)
```
## ImageStatistics (please ignore)
(Statistical) information about the input. i.e. mean values and the x and y size of the input
```
mean: list[float] = field(default_factory=list)
```
```
the_size: list[int] = field(default_factory=list)
```