Reference non-spike PyTorch network
This commit is contained in:
parent
9cfd4eb740
commit
7f99651fbb
8 changed files with 821 additions and 0 deletions
422
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Dataset.py
Normal file
422
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Dataset.py
Normal file
|
@ -0,0 +1,422 @@
|
||||||
|
# MIT License
|
||||||
|
# Copyright 2022 University of Bremen
|
||||||
|
#
|
||||||
|
# Permission is hereby granted, free of charge, to any person obtaining
|
||||||
|
# a copy of this software and associated documentation files (the "Software"),
|
||||||
|
# to deal in the Software without restriction, including without limitation
|
||||||
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
# and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
# Software is furnished to do so, subject to the following conditions:
|
||||||
|
#
|
||||||
|
# The above copyright notice and this permission notice shall be included
|
||||||
|
# in all copies or substantial portions of the Software.
|
||||||
|
#
|
||||||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||||
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||||
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||||
|
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||||
|
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||||||
|
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
||||||
|
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# David Rotermund ( davrot@uni-bremen.de )
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Release history:
|
||||||
|
# ================
|
||||||
|
# 1.0.0 -- 01.05.2022: first release
|
||||||
|
#
|
||||||
|
#
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
import torchvision as tv # type: ignore
|
||||||
|
from Parameter import Config
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetMaster(torch.utils.data.Dataset, ABC):
|
||||||
|
|
||||||
|
path_label: str
|
||||||
|
label_storage: np.ndarray
|
||||||
|
pattern_storage: np.ndarray
|
||||||
|
number_of_pattern: int
|
||||||
|
mean: list[float]
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
train: bool = False,
|
||||||
|
path_pattern: str = "./",
|
||||||
|
path_label: str = "./",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if train is True:
|
||||||
|
self.label_storage = np.load(path_label + "/TrainLabelStorage.npy")
|
||||||
|
else:
|
||||||
|
self.label_storage = np.load(path_label + "/TestLabelStorage.npy")
|
||||||
|
|
||||||
|
if train is True:
|
||||||
|
self.pattern_storage = np.load(path_pattern + "/TrainPatternStorage.npy")
|
||||||
|
else:
|
||||||
|
self.pattern_storage = np.load(path_pattern + "/TestPatternStorage.npy")
|
||||||
|
|
||||||
|
self.number_of_pattern = self.label_storage.shape[0]
|
||||||
|
|
||||||
|
self.mean = []
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return self.number_of_pattern
|
||||||
|
|
||||||
|
# Get one pattern at position index
|
||||||
|
@abstractmethod
|
||||||
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetMNIST(DatasetMaster):
|
||||||
|
"""Contstructor"""
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
train: bool = False,
|
||||||
|
path_pattern: str = "./",
|
||||||
|
path_label: str = "./",
|
||||||
|
) -> None:
|
||||||
|
super().__init__(train, path_pattern, path_label)
|
||||||
|
|
||||||
|
self.pattern_storage = np.ascontiguousarray(
|
||||||
|
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pattern_storage /= np.max(self.pattern_storage)
|
||||||
|
|
||||||
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
||||||
|
self.mean = [*mean]
|
||||||
|
|
||||||
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
||||||
|
|
||||||
|
image = self.pattern_storage[index, 0:1, :, :]
|
||||||
|
target = int(self.label_storage[index])
|
||||||
|
return torch.tensor(image), target
|
||||||
|
|
||||||
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
"""0. The test image comes in
|
||||||
|
1. is center cropped
|
||||||
|
2. on/off filteres
|
||||||
|
3. returned.
|
||||||
|
|
||||||
|
This is a 1 channel version (e.g. one gray channel).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert len(cfg.image_statistics.mean) == 1
|
||||||
|
assert len(cfg.image_statistics.the_size) == 2
|
||||||
|
assert cfg.image_statistics.the_size[0] > 0
|
||||||
|
assert cfg.image_statistics.the_size[1] > 0
|
||||||
|
|
||||||
|
# Transformation chain
|
||||||
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
||||||
|
)
|
||||||
|
scripted_transforms = torch.jit.script(my_transforms)
|
||||||
|
|
||||||
|
# Preprocess the input data
|
||||||
|
pattern = scripted_transforms(pattern)
|
||||||
|
|
||||||
|
# => On/Off
|
||||||
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
||||||
|
gray: torch.Tensor = my_on_off_filter(
|
||||||
|
pattern[:, 0:1, :, :],
|
||||||
|
)
|
||||||
|
|
||||||
|
return gray
|
||||||
|
|
||||||
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
"""0. The training image comes in
|
||||||
|
1. is cropped from a random position
|
||||||
|
2. on/off filteres
|
||||||
|
3. returned.
|
||||||
|
|
||||||
|
This is a 1 channel version (e.g. one gray channel).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert len(cfg.image_statistics.mean) == 1
|
||||||
|
assert len(cfg.image_statistics.the_size) == 2
|
||||||
|
assert cfg.image_statistics.the_size[0] > 0
|
||||||
|
assert cfg.image_statistics.the_size[1] > 0
|
||||||
|
|
||||||
|
# Transformation chain
|
||||||
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
||||||
|
)
|
||||||
|
scripted_transforms = torch.jit.script(my_transforms)
|
||||||
|
|
||||||
|
# Preprocess the input data
|
||||||
|
pattern = scripted_transforms(pattern)
|
||||||
|
|
||||||
|
# => On/Off
|
||||||
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
||||||
|
gray: torch.Tensor = my_on_off_filter(
|
||||||
|
pattern[:, 0:1, :, :],
|
||||||
|
)
|
||||||
|
|
||||||
|
return gray
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetFashionMNIST(DatasetMaster):
|
||||||
|
"""Contstructor"""
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
train: bool = False,
|
||||||
|
path_pattern: str = "./",
|
||||||
|
path_label: str = "./",
|
||||||
|
) -> None:
|
||||||
|
super().__init__(train, path_pattern, path_label)
|
||||||
|
|
||||||
|
self.pattern_storage = np.ascontiguousarray(
|
||||||
|
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pattern_storage /= np.max(self.pattern_storage)
|
||||||
|
|
||||||
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
||||||
|
self.mean = [*mean]
|
||||||
|
|
||||||
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
||||||
|
|
||||||
|
image = self.pattern_storage[index, 0:1, :, :]
|
||||||
|
target = int(self.label_storage[index])
|
||||||
|
return torch.tensor(image), target
|
||||||
|
|
||||||
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
"""0. The test image comes in
|
||||||
|
1. is center cropped
|
||||||
|
2. on/off filteres
|
||||||
|
3. returned.
|
||||||
|
|
||||||
|
This is a 1 channel version (e.g. one gray channel).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert len(cfg.image_statistics.mean) == 1
|
||||||
|
assert len(cfg.image_statistics.the_size) == 2
|
||||||
|
assert cfg.image_statistics.the_size[0] > 0
|
||||||
|
assert cfg.image_statistics.the_size[1] > 0
|
||||||
|
|
||||||
|
# Transformation chain
|
||||||
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
||||||
|
)
|
||||||
|
scripted_transforms = torch.jit.script(my_transforms)
|
||||||
|
|
||||||
|
# Preprocess the input data
|
||||||
|
pattern = scripted_transforms(pattern)
|
||||||
|
|
||||||
|
# => On/Off
|
||||||
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
||||||
|
gray: torch.Tensor = my_on_off_filter(
|
||||||
|
pattern[:, 0:1, :, :],
|
||||||
|
)
|
||||||
|
|
||||||
|
return gray
|
||||||
|
|
||||||
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
"""0. The training image comes in
|
||||||
|
1. is cropped from a random position
|
||||||
|
2. on/off filteres
|
||||||
|
3. returned.
|
||||||
|
|
||||||
|
This is a 1 channel version (e.g. one gray channel).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert len(cfg.image_statistics.mean) == 1
|
||||||
|
assert len(cfg.image_statistics.the_size) == 2
|
||||||
|
assert cfg.image_statistics.the_size[0] > 0
|
||||||
|
assert cfg.image_statistics.the_size[1] > 0
|
||||||
|
|
||||||
|
# Transformation chain
|
||||||
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
||||||
|
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
|
||||||
|
tv.transforms.ColorJitter(
|
||||||
|
brightness=cfg.augmentation.jitter_brightness,
|
||||||
|
contrast=cfg.augmentation.jitter_contrast,
|
||||||
|
saturation=cfg.augmentation.jitter_saturation,
|
||||||
|
hue=cfg.augmentation.jitter_hue,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
scripted_transforms = torch.jit.script(my_transforms)
|
||||||
|
|
||||||
|
# Preprocess the input data
|
||||||
|
pattern = scripted_transforms(pattern)
|
||||||
|
|
||||||
|
# => On/Off
|
||||||
|
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
||||||
|
gray: torch.Tensor = my_on_off_filter(
|
||||||
|
pattern[:, 0:1, :, :],
|
||||||
|
)
|
||||||
|
|
||||||
|
return gray
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetCIFAR(DatasetMaster):
|
||||||
|
"""Contstructor"""
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
train: bool = False,
|
||||||
|
path_pattern: str = "./",
|
||||||
|
path_label: str = "./",
|
||||||
|
) -> None:
|
||||||
|
super().__init__(train, path_pattern, path_label)
|
||||||
|
|
||||||
|
self.pattern_storage = np.ascontiguousarray(
|
||||||
|
np.moveaxis(self.pattern_storage.astype(dtype=np.float32), 3, 1)
|
||||||
|
)
|
||||||
|
self.pattern_storage /= np.max(self.pattern_storage)
|
||||||
|
|
||||||
|
mean = self.pattern_storage.mean(3).mean(2).mean(0)
|
||||||
|
self.mean = [*mean]
|
||||||
|
|
||||||
|
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
|
||||||
|
|
||||||
|
image = self.pattern_storage[index, :, :, :]
|
||||||
|
target = int(self.label_storage[index])
|
||||||
|
return torch.tensor(image), target
|
||||||
|
|
||||||
|
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
"""0. The test image comes in
|
||||||
|
1. is center cropped
|
||||||
|
2. on/off filteres
|
||||||
|
3. returned.
|
||||||
|
|
||||||
|
This is a 3 channel version (e.g. r,g,b channels).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert len(cfg.image_statistics.mean) == 3
|
||||||
|
assert len(cfg.image_statistics.the_size) == 2
|
||||||
|
assert cfg.image_statistics.the_size[0] > 0
|
||||||
|
assert cfg.image_statistics.the_size[1] > 0
|
||||||
|
|
||||||
|
# Transformation chain
|
||||||
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
||||||
|
)
|
||||||
|
scripted_transforms = torch.jit.script(my_transforms)
|
||||||
|
|
||||||
|
# Preprocess the input data
|
||||||
|
pattern = scripted_transforms(pattern)
|
||||||
|
|
||||||
|
# => On/Off
|
||||||
|
|
||||||
|
my_on_off_filter_r: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
||||||
|
my_on_off_filter_g: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[1])
|
||||||
|
my_on_off_filter_b: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[2])
|
||||||
|
r: torch.Tensor = my_on_off_filter_r(
|
||||||
|
pattern[:, 0:1, :, :],
|
||||||
|
)
|
||||||
|
g: torch.Tensor = my_on_off_filter_g(
|
||||||
|
pattern[:, 1:2, :, :],
|
||||||
|
)
|
||||||
|
b: torch.Tensor = my_on_off_filter_b(
|
||||||
|
pattern[:, 2:3, :, :],
|
||||||
|
)
|
||||||
|
|
||||||
|
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
|
||||||
|
return new_tensor
|
||||||
|
|
||||||
|
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
|
||||||
|
"""0. The training image comes in
|
||||||
|
1. is cropped from a random position
|
||||||
|
2. is randomly horizontally flipped
|
||||||
|
3. is randomly color jitteres
|
||||||
|
4. on/off filteres
|
||||||
|
5. returned.
|
||||||
|
|
||||||
|
This is a 3 channel version (e.g. r,g,b channels).
|
||||||
|
"""
|
||||||
|
assert len(cfg.image_statistics.mean) == 3
|
||||||
|
assert len(cfg.image_statistics.the_size) == 2
|
||||||
|
assert cfg.image_statistics.the_size[0] > 0
|
||||||
|
assert cfg.image_statistics.the_size[1] > 0
|
||||||
|
|
||||||
|
# Transformation chain
|
||||||
|
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
||||||
|
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
|
||||||
|
tv.transforms.ColorJitter(
|
||||||
|
brightness=cfg.augmentation.jitter_brightness,
|
||||||
|
contrast=cfg.augmentation.jitter_contrast,
|
||||||
|
saturation=cfg.augmentation.jitter_saturation,
|
||||||
|
hue=cfg.augmentation.jitter_hue,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
scripted_transforms = torch.jit.script(my_transforms)
|
||||||
|
|
||||||
|
# Preprocess the input data
|
||||||
|
pattern = scripted_transforms(pattern)
|
||||||
|
|
||||||
|
# => On/Off
|
||||||
|
my_on_off_filter_r: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
|
||||||
|
my_on_off_filter_g: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[1])
|
||||||
|
my_on_off_filter_b: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[2])
|
||||||
|
r: torch.Tensor = my_on_off_filter_r(
|
||||||
|
pattern[:, 0:1, :, :],
|
||||||
|
)
|
||||||
|
g: torch.Tensor = my_on_off_filter_g(
|
||||||
|
pattern[:, 1:2, :, :],
|
||||||
|
)
|
||||||
|
b: torch.Tensor = my_on_off_filter_b(
|
||||||
|
pattern[:, 2:3, :, :],
|
||||||
|
)
|
||||||
|
|
||||||
|
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
|
||||||
|
return new_tensor
|
||||||
|
|
||||||
|
|
||||||
|
class OnOffFilter(torch.nn.Module):
|
||||||
|
def __init__(self, p: float = 0.5) -> None:
|
||||||
|
super(OnOffFilter, self).__init__()
|
||||||
|
self.p: float = p
|
||||||
|
|
||||||
|
def forward(self, tensor: torch.Tensor) -> torch.Tensor:
|
||||||
|
|
||||||
|
assert tensor.shape[1] == 1
|
||||||
|
|
||||||
|
tensor_clone = 2.0 * (tensor - self.p)
|
||||||
|
|
||||||
|
temp_0: torch.Tensor = torch.where(
|
||||||
|
tensor_clone < 0.0,
|
||||||
|
-tensor_clone,
|
||||||
|
tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype),
|
||||||
|
)
|
||||||
|
|
||||||
|
temp_1: torch.Tensor = torch.where(
|
||||||
|
tensor_clone >= 0.0,
|
||||||
|
tensor_clone,
|
||||||
|
tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype),
|
||||||
|
)
|
||||||
|
|
||||||
|
new_tensor: torch.Tensor = torch.cat((temp_0, temp_1), dim=1)
|
||||||
|
|
||||||
|
return new_tensor
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return self.__class__.__name__ + "(p={0})".format(self.p)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
pass
|
BIN
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Error.png
Normal file
BIN
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Error.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 33 KiB |
Binary file not shown.
164
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Parameter.py
Normal file
164
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/Parameter.py
Normal file
|
@ -0,0 +1,164 @@
|
||||||
|
# MIT License
|
||||||
|
# Copyright 2022 University of Bremen
|
||||||
|
#
|
||||||
|
# Permission is hereby granted, free of charge, to any person obtaining
|
||||||
|
# a copy of this software and associated documentation files (the "Software"),
|
||||||
|
# to deal in the Software without restriction, including without limitation
|
||||||
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
# and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
# Software is furnished to do so, subject to the following conditions:
|
||||||
|
#
|
||||||
|
# The above copyright notice and this permission notice shall be included
|
||||||
|
# in all copies or substantial portions of the Software.
|
||||||
|
#
|
||||||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||||
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||||
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||||
|
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||||
|
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||||||
|
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
||||||
|
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# David Rotermund ( davrot@uni-bremen.de )
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# Release history:
|
||||||
|
# ================
|
||||||
|
# 1.0.0 -- 01.05.2022: first release
|
||||||
|
#
|
||||||
|
#
|
||||||
|
|
||||||
|
# %%
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Network:
|
||||||
|
"""Parameters of the network. The details about
|
||||||
|
its layers and the number of output neurons."""
|
||||||
|
|
||||||
|
number_of_output_neurons: int = field(default=0)
|
||||||
|
forward_kernel_size: list[list[int]] = field(default_factory=list)
|
||||||
|
forward_neuron_numbers: list[list[int]] = field(default_factory=list)
|
||||||
|
strides: list[list[int]] = field(default_factory=list)
|
||||||
|
dilation: list[list[int]] = field(default_factory=list)
|
||||||
|
padding: list[list[int]] = field(default_factory=list)
|
||||||
|
is_pooling_layer: list[bool] = field(default_factory=list)
|
||||||
|
w_trainable: list[bool] = field(default_factory=list)
|
||||||
|
eps_xy_trainable: list[bool] = field(default_factory=list)
|
||||||
|
eps_xy_mean: list[bool] = field(default_factory=list)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class LearningParameters:
|
||||||
|
"""Parameter required for training"""
|
||||||
|
|
||||||
|
loss_coeffs_mse: float = field(default=0.5)
|
||||||
|
loss_coeffs_kldiv: float = field(default=1.0)
|
||||||
|
learning_rate_gamma_w: float = field(default=-1.0)
|
||||||
|
learning_rate_gamma_eps_xy: float = field(default=-1.0)
|
||||||
|
learning_rate_threshold_w: float = field(default=0.00001)
|
||||||
|
learning_rate_threshold_eps_xy: float = field(default=0.00001)
|
||||||
|
learning_active: bool = field(default=True)
|
||||||
|
weight_noise_amplitude: float = field(default=0.01)
|
||||||
|
eps_xy_intitial: float = field(default=0.1)
|
||||||
|
test_every_x_learning_steps: int = field(default=50)
|
||||||
|
test_during_learning: bool = field(default=True)
|
||||||
|
lr_scheduler_factor: float = field(default=0.75)
|
||||||
|
lr_scheduler_patience: int = field(default=10)
|
||||||
|
optimizer_name: str = field(default="Adam")
|
||||||
|
lr_schedule_name: str = field(default="ReduceLROnPlateau")
|
||||||
|
number_of_batches_for_one_update: int = field(default=1)
|
||||||
|
alpha_number_of_iterations: int = field(default=0)
|
||||||
|
overload_path: str = field(default="./Previous")
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Augmentation:
|
||||||
|
"""Parameters used for data augmentation."""
|
||||||
|
|
||||||
|
crop_width_in_pixel: int = field(default=2)
|
||||||
|
flip_p: float = field(default=0.5)
|
||||||
|
jitter_brightness: float = field(default=0.5)
|
||||||
|
jitter_contrast: float = field(default=0.1)
|
||||||
|
jitter_saturation: float = field(default=0.1)
|
||||||
|
jitter_hue: float = field(default=0.15)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ImageStatistics:
|
||||||
|
"""(Statistical) information about the input. i.e.
|
||||||
|
mean values and the x and y size of the input"""
|
||||||
|
|
||||||
|
mean: list[float] = field(default_factory=list)
|
||||||
|
the_size: list[int] = field(default_factory=list)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Config:
|
||||||
|
"""Master config class."""
|
||||||
|
|
||||||
|
# Sub classes
|
||||||
|
network_structure: Network = field(default_factory=Network)
|
||||||
|
learning_parameters: LearningParameters = field(default_factory=LearningParameters)
|
||||||
|
augmentation: Augmentation = field(default_factory=Augmentation)
|
||||||
|
image_statistics: ImageStatistics = field(default_factory=ImageStatistics)
|
||||||
|
|
||||||
|
batch_size: int = field(default=500)
|
||||||
|
data_mode: str = field(default="")
|
||||||
|
|
||||||
|
learning_step: int = field(default=0)
|
||||||
|
learning_step_max: int = field(default=10000)
|
||||||
|
|
||||||
|
number_of_cpu_processes: int = field(default=-1)
|
||||||
|
|
||||||
|
number_of_spikes: int = field(default=0)
|
||||||
|
cooldown_after_number_of_spikes: int = field(default=0)
|
||||||
|
|
||||||
|
weight_path: str = field(default="./Weights/")
|
||||||
|
eps_xy_path: str = field(default="./EpsXY/")
|
||||||
|
data_path: str = field(default="./")
|
||||||
|
|
||||||
|
reduction_cooldown: float = field(default=25.0)
|
||||||
|
epsilon_0: float = field(default=1.0)
|
||||||
|
|
||||||
|
update_after_x_batch: float = field(default=1.0)
|
||||||
|
|
||||||
|
def __post_init__(self) -> None:
|
||||||
|
"""Post init determines the number of cores.
|
||||||
|
Creates the required directory and gives us an optimized
|
||||||
|
(for the amount of cores) batch size."""
|
||||||
|
number_of_cpu_processes_temp = os.cpu_count()
|
||||||
|
|
||||||
|
if self.number_of_cpu_processes < 1:
|
||||||
|
if number_of_cpu_processes_temp is None:
|
||||||
|
self.number_of_cpu_processes = 1
|
||||||
|
else:
|
||||||
|
self.number_of_cpu_processes = number_of_cpu_processes_temp
|
||||||
|
|
||||||
|
os.makedirs(self.weight_path, exist_ok=True)
|
||||||
|
os.makedirs(self.eps_xy_path, exist_ok=True)
|
||||||
|
os.makedirs(self.data_path, exist_ok=True)
|
||||||
|
|
||||||
|
self.batch_size = (
|
||||||
|
self.batch_size // self.number_of_cpu_processes
|
||||||
|
) * self.number_of_cpu_processes
|
||||||
|
|
||||||
|
self.batch_size = np.max((self.batch_size, self.number_of_cpu_processes))
|
||||||
|
self.batch_size = int(self.batch_size)
|
||||||
|
|
||||||
|
def get_epsilon_t(self):
|
||||||
|
"""Generates the time series of the basic epsilon."""
|
||||||
|
np_epsilon_t: np.ndarray = np.ones((self.number_of_spikes), dtype=np.float32)
|
||||||
|
np_epsilon_t[
|
||||||
|
self.cooldown_after_number_of_spikes : self.number_of_spikes
|
||||||
|
] /= self.reduction_cooldown
|
||||||
|
return torch.tensor(np_epsilon_t)
|
||||||
|
|
||||||
|
def get_update_after_x_pattern(self):
|
||||||
|
"""Tells us after how many pattern we need to update the weights."""
|
||||||
|
return self.batch_size * self.update_after_x_batch
|
Binary file not shown.
1
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/info.md
Normal file
1
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/info.md
Normal file
|
@ -0,0 +1 @@
|
||||||
|
Performance reached (test data correct classifications): 89.82%
|
31
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/plot.py
Normal file
31
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/plot.py
Normal file
|
@ -0,0 +1,31 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from tensorboard.backend.event_processing import event_accumulator
|
||||||
|
|
||||||
|
filename: str = "events.out.tfevents.1651328399.fedora.118340.0"
|
||||||
|
|
||||||
|
acc = event_accumulator.EventAccumulator(filename)
|
||||||
|
acc.Reload()
|
||||||
|
|
||||||
|
# What is available?
|
||||||
|
# available_scalar = acc.Tags()["scalars"]
|
||||||
|
# print("Available Scalars")
|
||||||
|
# print(available_scalar)
|
||||||
|
|
||||||
|
which_scalar: str = "Test Number Correct"
|
||||||
|
te = acc.Scalars(which_scalar)
|
||||||
|
|
||||||
|
temp: list = []
|
||||||
|
for te_item in te:
|
||||||
|
temp.append((te_item[1], te_item[2]))
|
||||||
|
temp_np = np.array(temp)
|
||||||
|
|
||||||
|
plt.semilogy(temp_np[:, 0], (1.0 - (temp_np[:, 1] / 10000)) * 100)
|
||||||
|
plt.xlabel("Epochs")
|
||||||
|
plt.ylabel("Error [%]")
|
||||||
|
plt.savefig("Error.png")
|
||||||
|
plt.show()
|
203
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/run.py
Normal file
203
DATA_FASHION_MNIST/PyTorch_Non_Spike_Network/run.py
Normal file
|
@ -0,0 +1,203 @@
|
||||||
|
# %%
|
||||||
|
import torch
|
||||||
|
from Dataset import DatasetFashionMNIST
|
||||||
|
from Parameter import Config
|
||||||
|
import torchvision as tv # type: ignore
|
||||||
|
|
||||||
|
# Some parameters
|
||||||
|
|
||||||
|
cfg = Config()
|
||||||
|
|
||||||
|
input_number_of_channel: int = 1
|
||||||
|
input_dim_x: int = 24
|
||||||
|
input_dim_y: int = 24
|
||||||
|
|
||||||
|
number_of_output_channels_conv1: int = 32
|
||||||
|
number_of_output_channels_conv2: int = 64
|
||||||
|
number_of_output_channels_flatten1: int = 576
|
||||||
|
number_of_output_channels_full1: int = 10
|
||||||
|
|
||||||
|
kernel_size_conv1: tuple[int, int] = (5, 5)
|
||||||
|
kernel_size_pool1: tuple[int, int] = (2, 2)
|
||||||
|
kernel_size_conv2: tuple[int, int] = (5, 5)
|
||||||
|
kernel_size_pool2: tuple[int, int] = (2, 2)
|
||||||
|
|
||||||
|
stride_conv1: tuple[int, int] = (1, 1)
|
||||||
|
stride_pool1: tuple[int, int] = (2, 2)
|
||||||
|
stride_conv2: tuple[int, int] = (1, 1)
|
||||||
|
stride_pool2: tuple[int, int] = (2, 2)
|
||||||
|
|
||||||
|
padding_conv1: int = 0
|
||||||
|
padding_pool1: int = 0
|
||||||
|
padding_conv2: int = 0
|
||||||
|
padding_pool2: int = 0
|
||||||
|
|
||||||
|
network = torch.nn.Sequential(
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=input_number_of_channel,
|
||||||
|
out_channels=number_of_output_channels_conv1,
|
||||||
|
kernel_size=kernel_size_conv1,
|
||||||
|
stride=stride_conv1,
|
||||||
|
padding=padding_conv1,
|
||||||
|
),
|
||||||
|
torch.nn.ReLU(),
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
|
||||||
|
),
|
||||||
|
torch.nn.Conv2d(
|
||||||
|
in_channels=number_of_output_channels_conv1,
|
||||||
|
out_channels=number_of_output_channels_conv2,
|
||||||
|
kernel_size=kernel_size_conv2,
|
||||||
|
stride=stride_conv2,
|
||||||
|
padding=padding_conv2,
|
||||||
|
),
|
||||||
|
torch.nn.ReLU(),
|
||||||
|
torch.nn.MaxPool2d(
|
||||||
|
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
|
||||||
|
),
|
||||||
|
torch.nn.Flatten(
|
||||||
|
start_dim=1,
|
||||||
|
),
|
||||||
|
torch.nn.Linear(
|
||||||
|
in_features=number_of_output_channels_flatten1,
|
||||||
|
out_features=number_of_output_channels_full1,
|
||||||
|
bias=True,
|
||||||
|
),
|
||||||
|
torch.nn.Softmax(dim=1),
|
||||||
|
)
|
||||||
|
# %%
|
||||||
|
path_pattern: str = "./DATA_FASHION_MNIST/"
|
||||||
|
path_label: str = "./DATA_FASHION_MNIST/"
|
||||||
|
|
||||||
|
dataset_train = DatasetFashionMNIST(
|
||||||
|
train=True, path_pattern=path_pattern, path_label=path_label
|
||||||
|
)
|
||||||
|
dataset_test = DatasetFashionMNIST(
|
||||||
|
train=False, path_pattern=path_pattern, path_label=path_label
|
||||||
|
)
|
||||||
|
cfg.image_statistics.mean = dataset_train.mean
|
||||||
|
# The basic size
|
||||||
|
cfg.image_statistics.the_size = [
|
||||||
|
dataset_train.pattern_storage.shape[2],
|
||||||
|
dataset_train.pattern_storage.shape[3],
|
||||||
|
]
|
||||||
|
# Minus the stuff we cut away in the pattern filter
|
||||||
|
cfg.image_statistics.the_size[0] -= 2 * cfg.augmentation.crop_width_in_pixel
|
||||||
|
cfg.image_statistics.the_size[1] -= 2 * cfg.augmentation.crop_width_in_pixel
|
||||||
|
|
||||||
|
|
||||||
|
batch_size_train: int = 100
|
||||||
|
batch_size_test: int = 100
|
||||||
|
|
||||||
|
|
||||||
|
train_data_load = torch.utils.data.DataLoader(
|
||||||
|
dataset_train, batch_size=batch_size_train, shuffle=True
|
||||||
|
)
|
||||||
|
|
||||||
|
test_data_load = torch.utils.data.DataLoader(
|
||||||
|
dataset_test, batch_size=batch_size_test, shuffle=False
|
||||||
|
)
|
||||||
|
|
||||||
|
transforms_test: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
|
||||||
|
)
|
||||||
|
scripted_transforms_test = torch.jit.script(transforms_test)
|
||||||
|
|
||||||
|
transforms_train: torch.nn.Sequential = torch.nn.Sequential(
|
||||||
|
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
|
||||||
|
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
|
||||||
|
tv.transforms.ColorJitter(
|
||||||
|
brightness=cfg.augmentation.jitter_brightness,
|
||||||
|
contrast=cfg.augmentation.jitter_contrast,
|
||||||
|
saturation=cfg.augmentation.jitter_saturation,
|
||||||
|
hue=cfg.augmentation.jitter_hue,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
scripted_transforms_train = torch.jit.script(transforms_train)
|
||||||
|
# %%
|
||||||
|
# The optimizer
|
||||||
|
optimizer = torch.optim.Adam(network.parameters(), lr=0.001)
|
||||||
|
# The LR Scheduler
|
||||||
|
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.75)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
number_of_test_pattern: int = dataset_test.__len__()
|
||||||
|
number_of_train_pattern: int = dataset_train.__len__()
|
||||||
|
|
||||||
|
number_of_epoch: int = 200
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import time
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
tb = SummaryWriter()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
loss_function = torch.nn.CrossEntropyLoss()
|
||||||
|
|
||||||
|
for epoch_id in range(0, number_of_epoch):
|
||||||
|
print(f"Epoch: {epoch_id}")
|
||||||
|
t_start: float = time.perf_counter()
|
||||||
|
|
||||||
|
train_loss: float = 0.0
|
||||||
|
train_correct: int = 0
|
||||||
|
train_number: int = 0
|
||||||
|
test_correct: int = 0
|
||||||
|
test_number: int = 0
|
||||||
|
|
||||||
|
# Switch the network into training mode
|
||||||
|
network.train()
|
||||||
|
|
||||||
|
# This runs in total for one epoch split up into mini-batches
|
||||||
|
for image, target in train_data_load:
|
||||||
|
|
||||||
|
# Clean the gradient
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
output = network(scripted_transforms_train(image))
|
||||||
|
|
||||||
|
loss = loss_function(output, target)
|
||||||
|
|
||||||
|
train_loss += loss.item()
|
||||||
|
train_correct += (output.argmax(dim=1) == target).sum().numpy()
|
||||||
|
train_number += target.shape[0]
|
||||||
|
# Calculate backprop
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
# Update the parameter
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
# Update the learning rate
|
||||||
|
lr_scheduler.step(train_loss)
|
||||||
|
|
||||||
|
t_training: float = time.perf_counter()
|
||||||
|
|
||||||
|
# Switch the network into evalution mode
|
||||||
|
network.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
for image, target in test_data_load:
|
||||||
|
|
||||||
|
output = network(scripted_transforms_test(image))
|
||||||
|
|
||||||
|
test_correct += (output.argmax(dim=1) == target).sum().numpy()
|
||||||
|
test_number += target.shape[0]
|
||||||
|
|
||||||
|
t_testing = time.perf_counter()
|
||||||
|
|
||||||
|
perfomance_test_correct: float = 100.0 * test_correct / test_number
|
||||||
|
perfomance_train_correct: float = 100.0 * train_correct / train_number
|
||||||
|
|
||||||
|
tb.add_scalar("Train Loss", train_loss, epoch_id)
|
||||||
|
tb.add_scalar("Train Number Correct", train_correct, epoch_id)
|
||||||
|
tb.add_scalar("Test Number Correct", test_correct, epoch_id)
|
||||||
|
|
||||||
|
print(f"Training: Loss={train_loss:.5f} Correct={perfomance_train_correct:.2f}%")
|
||||||
|
print(f"Testing: Correct={perfomance_test_correct:.2f}%")
|
||||||
|
print(
|
||||||
|
f"Time: Training={(t_training-t_start):.1f}sec, Testing={(t_testing-t_training):.1f}sec"
|
||||||
|
)
|
||||||
|
torch.save(network, "Model_MNIST_A_" + str(epoch_id) + ".pt")
|
||||||
|
print()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
tb.close()
|
Loading…
Reference in a new issue