Improved loading of existing files
This commit is contained in:
parent
5a9259a0f3
commit
ec1b5c6a01
2 changed files with 291 additions and 27 deletions
48
learn_it.py
48
learn_it.py
|
@ -179,47 +179,35 @@ logging.info("*** Network generated.")
|
|||
for id in range(0, len(network)):
|
||||
# Load previous weights and epsilon xy
|
||||
if cfg.learning_step > 0:
|
||||
filename = (
|
||||
cfg.weight_path
|
||||
+ "/Weight_L"
|
||||
+ str(id)
|
||||
+ "_S"
|
||||
+ str(cfg.learning_step)
|
||||
+ ".npy"
|
||||
)
|
||||
if os.path.exists(filename) is True:
|
||||
network[id].weights = torch.tensor(
|
||||
np.load(
|
||||
cfg.weight_path
|
||||
+ "/Weight_L"
|
||||
+ str(id)
|
||||
+ "_S"
|
||||
+ str(cfg.learning_step)
|
||||
+ ".npy"
|
||||
),
|
||||
np.load(filename),
|
||||
dtype=torch.float64,
|
||||
)
|
||||
wf[id] = np.load(filename)
|
||||
|
||||
wf[id] = np.load(
|
||||
cfg.weight_path
|
||||
+ "/Weight_L"
|
||||
filename = (
|
||||
cfg.eps_xy_path
|
||||
+ "/EpsXY_L"
|
||||
+ str(id)
|
||||
+ "_S"
|
||||
+ str(cfg.learning_step)
|
||||
+ ".npy"
|
||||
)
|
||||
|
||||
if os.path.exists(filename) is True:
|
||||
network[id].epsilon_xy = torch.tensor(
|
||||
np.load(
|
||||
cfg.eps_xy_path
|
||||
+ "/EpsXY_L"
|
||||
+ str(id)
|
||||
+ "_S"
|
||||
+ str(cfg.learning_step)
|
||||
+ ".npy"
|
||||
),
|
||||
np.load(filename),
|
||||
dtype=torch.float64,
|
||||
)
|
||||
|
||||
eps_xy[id] = np.load(
|
||||
cfg.eps_xy_path
|
||||
+ "/EpsXY_L"
|
||||
+ str(id)
|
||||
+ "_S"
|
||||
+ str(cfg.learning_step)
|
||||
+ ".npy"
|
||||
)
|
||||
eps_xy[id] = np.load(filename)
|
||||
|
||||
for id in range(0, len(network)):
|
||||
|
||||
|
@ -578,7 +566,7 @@ with torch.no_grad():
|
|||
time_0 = time.perf_counter()
|
||||
|
||||
h_h: torch.Tensor = network(
|
||||
the_dataset_train.pattern_filter_test(h_x, cfg).type(
|
||||
the_dataset_test.pattern_filter_test(h_x, cfg).type(
|
||||
dtype=torch.float64
|
||||
)
|
||||
)
|
||||
|
|
276
test_it.py
Normal file
276
test_it.py
Normal file
|
@ -0,0 +1,276 @@
|
|||
# MIT License
|
||||
# Copyright 2022 University of Bremen
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining
|
||||
# a copy of this software and associated documentation files (the "Software"),
|
||||
# to deal in the Software without restriction, including without limitation
|
||||
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
# and/or sell copies of the Software, and to permit persons to whom the
|
||||
# Software is furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included
|
||||
# in all copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
||||
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
||||
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
||||
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
#
|
||||
#
|
||||
# David Rotermund ( davrot@uni-bremen.de )
|
||||
#
|
||||
#
|
||||
# Release history:
|
||||
# ================
|
||||
# 1.0.0 -- 01.05.2022: first release
|
||||
#
|
||||
#
|
||||
|
||||
# %%
|
||||
import os
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
|
||||
import numpy as np
|
||||
import sys
|
||||
import torch
|
||||
import time
|
||||
import dataconf
|
||||
import logging
|
||||
from datetime import datetime
|
||||
import glob
|
||||
|
||||
from Dataset import (
|
||||
DatasetMaster,
|
||||
DatasetCIFAR,
|
||||
DatasetMNIST,
|
||||
DatasetFashionMNIST,
|
||||
)
|
||||
from Parameter import Config
|
||||
from SbS import SbS
|
||||
|
||||
|
||||
#######################################################################
|
||||
# We want to log what is going on into a file and screen #
|
||||
#######################################################################
|
||||
|
||||
now = datetime.now()
|
||||
dt_string_filename = now.strftime("%Y_%m_%d_%H_%M_%S")
|
||||
logging.basicConfig(
|
||||
filename="log_" + dt_string_filename + ".txt",
|
||||
filemode="w",
|
||||
level=logging.INFO,
|
||||
format="%(asctime)s %(message)s",
|
||||
)
|
||||
logging.getLogger().addHandler(logging.StreamHandler())
|
||||
|
||||
#######################################################################
|
||||
# Load the config data from the json file #
|
||||
#######################################################################
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
raise Exception("Argument: Config file name is missing")
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
raise Exception("Argument: Weight and epsilon file id is missing")
|
||||
|
||||
|
||||
filename: str = sys.argv[1]
|
||||
|
||||
if os.path.exists(filename) is False:
|
||||
raise Exception(f"Config file not found! {filename}")
|
||||
|
||||
cfg = dataconf.file(filename, Config)
|
||||
logging.info(f"Using configuration file: {filename}")
|
||||
|
||||
cfg.learning_step = int(sys.argv[2])
|
||||
assert cfg.learning_step > 0
|
||||
|
||||
#######################################################################
|
||||
# Prepare the test and training data #
|
||||
#######################################################################
|
||||
|
||||
# Load the input data
|
||||
the_dataset_test: DatasetMaster
|
||||
if cfg.data_mode == "CIFAR10":
|
||||
the_dataset_test = DatasetCIFAR(
|
||||
train=False, path_pattern=cfg.data_path, path_label=cfg.data_path
|
||||
)
|
||||
elif cfg.data_mode == "MNIST":
|
||||
the_dataset_test = DatasetMNIST(
|
||||
train=False, path_pattern=cfg.data_path, path_label=cfg.data_path
|
||||
)
|
||||
elif cfg.data_mode == "MNIST_FASHION":
|
||||
the_dataset_test = DatasetFashionMNIST(
|
||||
train=False, path_pattern=cfg.data_path, path_label=cfg.data_path
|
||||
)
|
||||
else:
|
||||
raise Exception("data_mode unknown")
|
||||
|
||||
cfg.image_statistics.mean = the_dataset_test.mean
|
||||
|
||||
# The basic size
|
||||
cfg.image_statistics.the_size = [
|
||||
the_dataset_test.pattern_storage.shape[2],
|
||||
the_dataset_test.pattern_storage.shape[3],
|
||||
]
|
||||
|
||||
# Minus the stuff we cut away in the pattern filter
|
||||
cfg.image_statistics.the_size[0] -= 2 * cfg.augmentation.crop_width_in_pixel
|
||||
cfg.image_statistics.the_size[1] -= 2 * cfg.augmentation.crop_width_in_pixel
|
||||
|
||||
my_loader_test: torch.utils.data.DataLoader = torch.utils.data.DataLoader(
|
||||
the_dataset_test, batch_size=cfg.batch_size, shuffle=False
|
||||
)
|
||||
|
||||
logging.info("*** Data loaded.")
|
||||
|
||||
#######################################################################
|
||||
# Build the network #
|
||||
#######################################################################
|
||||
|
||||
wf: list[np.ndarray] = []
|
||||
eps_xy: list[np.ndarray] = []
|
||||
network = torch.nn.Sequential()
|
||||
for id in range(0, len(cfg.network_structure.is_pooling_layer)):
|
||||
if id == 0:
|
||||
input_size: list[int] = cfg.image_statistics.the_size
|
||||
else:
|
||||
input_size = network[id - 1].output_size.tolist()
|
||||
|
||||
network.append(
|
||||
SbS(
|
||||
number_of_input_neurons=cfg.network_structure.forward_neuron_numbers[id][0],
|
||||
number_of_neurons=cfg.network_structure.forward_neuron_numbers[id][1],
|
||||
input_size=input_size,
|
||||
forward_kernel_size=cfg.network_structure.forward_kernel_size[id],
|
||||
number_of_spikes=cfg.number_of_spikes,
|
||||
epsilon_t=cfg.get_epsilon_t(),
|
||||
epsilon_xy_intitial=cfg.learning_parameters.eps_xy_intitial,
|
||||
epsilon_0=cfg.epsilon_0,
|
||||
weight_noise_amplitude=cfg.learning_parameters.weight_noise_amplitude,
|
||||
is_pooling_layer=cfg.network_structure.is_pooling_layer[id],
|
||||
strides=cfg.network_structure.strides[id],
|
||||
dilation=cfg.network_structure.dilation[id],
|
||||
padding=cfg.network_structure.padding[id],
|
||||
alpha_number_of_iterations=cfg.learning_parameters.alpha_number_of_iterations,
|
||||
number_of_cpu_processes=cfg.number_of_cpu_processes,
|
||||
)
|
||||
)
|
||||
|
||||
eps_xy.append(network[id].epsilon_xy.detach().clone().numpy())
|
||||
wf.append(network[id].weights.detach().clone().numpy())
|
||||
|
||||
logging.info("*** Network generated.")
|
||||
|
||||
|
||||
for id in range(0, len(network)):
|
||||
|
||||
# Are there weights that overwrite the initial weights?
|
||||
file_to_load = glob.glob(
|
||||
cfg.learning_parameters.overload_path + "/Weight_L" + str(id) + "*.npy"
|
||||
)
|
||||
|
||||
if len(file_to_load) > 1:
|
||||
raise Exception(
|
||||
f"Too many previous weights files {cfg.learning_parameters.overload_path}/Weight_L{id}*.npy"
|
||||
)
|
||||
|
||||
if len(file_to_load) == 1:
|
||||
network[id].weights = torch.tensor(
|
||||
np.load(file_to_load[0]),
|
||||
dtype=torch.float64,
|
||||
)
|
||||
wf[id] = np.load(file_to_load[0])
|
||||
logging.info(f"File used: {file_to_load[0]}")
|
||||
|
||||
# Are there epsinlon xy files that overwrite the initial epsilon xy?
|
||||
file_to_load = glob.glob(
|
||||
cfg.learning_parameters.overload_path + "/EpsXY_L" + str(id) + "*.npy"
|
||||
)
|
||||
|
||||
if len(file_to_load) > 1:
|
||||
raise Exception(
|
||||
f"Too many previous epsilon xy files {cfg.learning_parameters.overload_path}/EpsXY_L{id}*.npy"
|
||||
)
|
||||
|
||||
if len(file_to_load) == 1:
|
||||
network[id].epsilon_xy = torch.tensor(
|
||||
np.load(file_to_load[0]),
|
||||
dtype=torch.float64,
|
||||
)
|
||||
eps_xy[id] = np.load(file_to_load[0])
|
||||
logging.info(f"File used: {file_to_load[0]}")
|
||||
|
||||
for id in range(0, len(network)):
|
||||
# Load previous weights and epsilon xy
|
||||
if cfg.learning_step > 0:
|
||||
filename = (
|
||||
cfg.weight_path
|
||||
+ "/Weight_L"
|
||||
+ str(id)
|
||||
+ "_S"
|
||||
+ str(cfg.learning_step)
|
||||
+ ".npy"
|
||||
)
|
||||
if os.path.exists(filename) is True:
|
||||
network[id].weights = torch.tensor(
|
||||
np.load(filename),
|
||||
dtype=torch.float64,
|
||||
)
|
||||
wf[id] = np.load(filename)
|
||||
|
||||
filename = (
|
||||
cfg.eps_xy_path
|
||||
+ "/EpsXY_L"
|
||||
+ str(id)
|
||||
+ "_S"
|
||||
+ str(cfg.learning_step)
|
||||
+ ".npy"
|
||||
)
|
||||
if os.path.exists(filename) is True:
|
||||
network[id].epsilon_xy = torch.tensor(
|
||||
np.load(filename),
|
||||
dtype=torch.float64,
|
||||
)
|
||||
eps_xy[id] = np.load(filename)
|
||||
|
||||
|
||||
#######################################################################
|
||||
# Some variable declarations #
|
||||
#######################################################################
|
||||
|
||||
test_correct: int = 0
|
||||
test_all: int = 0
|
||||
test_complete: int = the_dataset_test.__len__()
|
||||
|
||||
logging.info("")
|
||||
|
||||
with torch.no_grad():
|
||||
logging.info("Testing:")
|
||||
|
||||
for h_x, h_x_labels in my_loader_test:
|
||||
time_0 = time.perf_counter()
|
||||
|
||||
h_h: torch.Tensor = network(
|
||||
the_dataset_test.pattern_filter_test(h_x, cfg).type(dtype=torch.float64)
|
||||
)
|
||||
|
||||
test_correct += (h_h.argmax(dim=1).squeeze() == h_x_labels).sum().numpy()
|
||||
test_all += h_h.shape[0]
|
||||
performance = 100.0 * test_correct / test_all
|
||||
time_1 = time.perf_counter()
|
||||
time_measure_a = time_1 - time_0
|
||||
|
||||
logging.info(
|
||||
(
|
||||
f"\t\t{test_all} of {test_complete}"
|
||||
f" with {performance/100:^6.2%} \t Time used: {time_measure_a:^6.2f}sec"
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# %%
|
Loading…
Reference in a new issue