Delete DATA_FASHION_MNIST directory
This commit is contained in:
parent
6975d84087
commit
fa79f18d36
2 changed files with 0 additions and 169 deletions
|
@ -1,161 +0,0 @@
|
||||||
# MIT License
|
|
||||||
# Copyright 2022 University of Bremen
|
|
||||||
#
|
|
||||||
# Permission is hereby granted, free of charge, to any person obtaining
|
|
||||||
# a copy of this software and associated documentation files (the "Software"),
|
|
||||||
# to deal in the Software without restriction, including without limitation
|
|
||||||
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
||||||
# and/or sell copies of the Software, and to permit persons to whom the
|
|
||||||
# Software is furnished to do so, subject to the following conditions:
|
|
||||||
#
|
|
||||||
# The above copyright notice and this permission notice shall be included
|
|
||||||
# in all copies or substantial portions of the Software.
|
|
||||||
#
|
|
||||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
||||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
||||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
||||||
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
||||||
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
||||||
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
|
||||||
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# David Rotermund ( davrot@uni-bremen.de )
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# Release history:
|
|
||||||
# ================
|
|
||||||
# 1.0.0 -- 01.05.2022: first release
|
|
||||||
#
|
|
||||||
#
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
# [offset] [type] [value] [description]
|
|
||||||
# 0000 32 bit integer 0x00000801(2049) magic number (MSB first)
|
|
||||||
# 0004 32 bit integer 60000 number of items
|
|
||||||
# 0008 unsigned byte ?? label
|
|
||||||
# 0009 unsigned byte ?? label
|
|
||||||
# ........
|
|
||||||
# xxxx unsigned byte ?? label
|
|
||||||
# The labels values are 0 to 9.
|
|
||||||
|
|
||||||
|
|
||||||
class ReadLabel:
|
|
||||||
"""Class for reading the labels from an MNIST label file"""
|
|
||||||
|
|
||||||
def __init__(self, filename):
|
|
||||||
self.filename: str = filename
|
|
||||||
self.data = self.read_from_file(filename)
|
|
||||||
|
|
||||||
def read_from_file(self, filename):
|
|
||||||
int32_data = np.dtype(np.uint32)
|
|
||||||
int32_data = int32_data.newbyteorder(">")
|
|
||||||
file = open(filename, "rb")
|
|
||||||
|
|
||||||
magic_flag = np.frombuffer(file.read(4), int32_data)[0]
|
|
||||||
|
|
||||||
if magic_flag != 2049:
|
|
||||||
data = np.zeros(0)
|
|
||||||
number_of_elements = 0
|
|
||||||
else:
|
|
||||||
number_of_elements = np.frombuffer(file.read(4), int32_data)[0]
|
|
||||||
|
|
||||||
if number_of_elements < 1:
|
|
||||||
data = np.zeros(0)
|
|
||||||
else:
|
|
||||||
data = np.frombuffer(file.read(number_of_elements), dtype=np.uint8)
|
|
||||||
|
|
||||||
file.close()
|
|
||||||
|
|
||||||
return data
|
|
||||||
|
|
||||||
|
|
||||||
# [offset] [type] [value] [description]
|
|
||||||
# 0000 32 bit integer 0x00000803(2051) magic number
|
|
||||||
# 0004 32 bit integer 60000 number of images
|
|
||||||
# 0008 32 bit integer 28 number of rows
|
|
||||||
# 0012 32 bit integer 28 number of columns
|
|
||||||
# 0016 unsigned byte ?? pixel
|
|
||||||
# 0017 unsigned byte ?? pixel
|
|
||||||
# ........
|
|
||||||
# xxxx unsigned byte ?? pixel
|
|
||||||
# Pixels are organized row-wise.
|
|
||||||
# Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).
|
|
||||||
|
|
||||||
|
|
||||||
class ReadPicture:
|
|
||||||
"""Class for reading the images from an MNIST image file"""
|
|
||||||
|
|
||||||
def __init__(self, filename):
|
|
||||||
self.filename: str = filename
|
|
||||||
self.data = self.read_from_file(filename)
|
|
||||||
|
|
||||||
def read_from_file(self, filename):
|
|
||||||
int32_data = np.dtype(np.uint32)
|
|
||||||
int32_data = int32_data.newbyteorder(">")
|
|
||||||
file = open(filename, "rb")
|
|
||||||
|
|
||||||
magic_flag = np.frombuffer(file.read(4), int32_data)[0]
|
|
||||||
|
|
||||||
if magic_flag != 2051:
|
|
||||||
data = np.zeros(0)
|
|
||||||
number_of_elements = 0
|
|
||||||
else:
|
|
||||||
number_of_elements = np.frombuffer(file.read(4), int32_data)[0]
|
|
||||||
|
|
||||||
if number_of_elements < 1:
|
|
||||||
data = np.zeros(0)
|
|
||||||
number_of_rows = 0
|
|
||||||
else:
|
|
||||||
number_of_rows = np.frombuffer(file.read(4), int32_data)[0]
|
|
||||||
|
|
||||||
if number_of_rows != 28:
|
|
||||||
data = np.zeros(0)
|
|
||||||
number_of_columns = 0
|
|
||||||
else:
|
|
||||||
number_of_columns = np.frombuffer(file.read(4), int32_data)[0]
|
|
||||||
|
|
||||||
if number_of_columns != 28:
|
|
||||||
data = np.zeros(0)
|
|
||||||
else:
|
|
||||||
data = np.frombuffer(
|
|
||||||
file.read(number_of_elements * number_of_rows * number_of_columns),
|
|
||||||
dtype=np.uint8,
|
|
||||||
)
|
|
||||||
data = data.reshape(number_of_elements, number_of_columns, number_of_rows)
|
|
||||||
|
|
||||||
file.close()
|
|
||||||
|
|
||||||
return data
|
|
||||||
|
|
||||||
|
|
||||||
def proprocess_data_set(test_mode):
|
|
||||||
|
|
||||||
if test_mode is True:
|
|
||||||
filename_out_pattern: str = "TestPatternStorage.npy"
|
|
||||||
filename_out_label: str = "TestLabelStorage.npy"
|
|
||||||
filename_in_image: str = "t10k-images-idx3-ubyte"
|
|
||||||
filename_in_label = "t10k-labels-idx1-ubyte"
|
|
||||||
else:
|
|
||||||
filename_out_pattern = "TrainPatternStorage.npy"
|
|
||||||
filename_out_label = "TrainLabelStorage.npy"
|
|
||||||
filename_in_image = "train-images-idx3-ubyte"
|
|
||||||
filename_in_label = "train-labels-idx1-ubyte"
|
|
||||||
|
|
||||||
pictures = ReadPicture(filename_in_image)
|
|
||||||
labels = ReadLabel(filename_in_label)
|
|
||||||
|
|
||||||
# Down to 0 ... 1.0
|
|
||||||
max_value = np.max(pictures.data.astype(np.float32))
|
|
||||||
d = np.float32(pictures.data.astype(np.float32) / max_value)
|
|
||||||
|
|
||||||
label_storage = np.uint64(labels.data)
|
|
||||||
pattern_storage = d.astype(np.float32)
|
|
||||||
|
|
||||||
np.save(filename_out_pattern, pattern_storage)
|
|
||||||
np.save(filename_out_label, label_storage)
|
|
||||||
|
|
||||||
|
|
||||||
proprocess_data_set(True)
|
|
||||||
proprocess_data_set(False)
|
|
|
@ -1,8 +0,0 @@
|
||||||
https://github.com/zalandoresearch/fashion-mnist
|
|
||||||
|
|
||||||
We need:
|
|
||||||
t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz
|
|
||||||
|
|
||||||
Then
|
|
||||||
gzip -d *.gz
|
|
||||||
python convert.py
|
|
Loading…
Reference in a new issue