Delete DATA_MNIST directory

This commit is contained in:
David Rotermund 2023-01-05 13:21:52 +01:00 committed by GitHub
parent d3805169db
commit fddb4016b0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 0 additions and 967 deletions

View file

@ -1,422 +0,0 @@
# MIT License
# Copyright 2022 University of Bremen
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# David Rotermund ( davrot@uni-bremen.de )
#
#
# Release history:
# ================
# 1.0.0 -- 01.05.2022: first release
#
#
from abc import ABC, abstractmethod
import torch
import numpy as np
import torchvision as tv # type: ignore
from Parameter import Config
class DatasetMaster(torch.utils.data.Dataset, ABC):
path_label: str
label_storage: np.ndarray
pattern_storage: np.ndarray
number_of_pattern: int
mean: list[float]
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__()
if train is True:
self.label_storage = np.load(path_label + "/TrainLabelStorage.npy")
else:
self.label_storage = np.load(path_label + "/TestLabelStorage.npy")
if train is True:
self.pattern_storage = np.load(path_pattern + "/TrainPatternStorage.npy")
else:
self.pattern_storage = np.load(path_pattern + "/TestPatternStorage.npy")
self.number_of_pattern = self.label_storage.shape[0]
self.mean = []
def __len__(self) -> int:
return self.number_of_pattern
# Get one pattern at position index
@abstractmethod
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
pass
@abstractmethod
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
pass
@abstractmethod
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
pass
class DatasetMNIST(DatasetMaster):
"""Contstructor"""
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__(train, path_pattern, path_label)
self.pattern_storage = np.ascontiguousarray(
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
)
self.pattern_storage /= np.max(self.pattern_storage)
mean = self.pattern_storage.mean(3).mean(2).mean(0)
self.mean = [*mean]
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
image = self.pattern_storage[index, 0:1, :, :]
target = int(self.label_storage[index])
return torch.tensor(image), target
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The test image comes in
1. is center cropped
2. on/off filteres
3. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
# => On/Off
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
gray: torch.Tensor = my_on_off_filter(
pattern[:, 0:1, :, :],
)
return gray
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The training image comes in
1. is cropped from a random position
2. on/off filteres
3. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
# => On/Off
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
gray: torch.Tensor = my_on_off_filter(
pattern[:, 0:1, :, :],
)
return gray
class DatasetFashionMNIST(DatasetMaster):
"""Contstructor"""
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__(train, path_pattern, path_label)
self.pattern_storage = np.ascontiguousarray(
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
)
self.pattern_storage /= np.max(self.pattern_storage)
mean = self.pattern_storage.mean(3).mean(2).mean(0)
self.mean = [*mean]
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
image = self.pattern_storage[index, 0:1, :, :]
target = int(self.label_storage[index])
return torch.tensor(image), target
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The test image comes in
1. is center cropped
2. on/off filteres
3. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
# => On/Off
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
gray: torch.Tensor = my_on_off_filter(
pattern[:, 0:1, :, :],
)
return gray
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The training image comes in
1. is cropped from a random position
2. on/off filteres
3. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
tv.transforms.ColorJitter(
brightness=cfg.augmentation.jitter_brightness,
contrast=cfg.augmentation.jitter_contrast,
saturation=cfg.augmentation.jitter_saturation,
hue=cfg.augmentation.jitter_hue,
),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
# => On/Off
my_on_off_filter: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
gray: torch.Tensor = my_on_off_filter(
pattern[:, 0:1, :, :],
)
return gray
class DatasetCIFAR(DatasetMaster):
"""Contstructor"""
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__(train, path_pattern, path_label)
self.pattern_storage = np.ascontiguousarray(
np.moveaxis(self.pattern_storage.astype(dtype=np.float32), 3, 1)
)
self.pattern_storage /= np.max(self.pattern_storage)
mean = self.pattern_storage.mean(3).mean(2).mean(0)
self.mean = [*mean]
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
image = self.pattern_storage[index, :, :, :]
target = int(self.label_storage[index])
return torch.tensor(image), target
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The test image comes in
1. is center cropped
2. on/off filteres
3. returned.
This is a 3 channel version (e.g. r,g,b channels).
"""
assert len(cfg.image_statistics.mean) == 3
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
# => On/Off
my_on_off_filter_r: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
my_on_off_filter_g: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[1])
my_on_off_filter_b: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[2])
r: torch.Tensor = my_on_off_filter_r(
pattern[:, 0:1, :, :],
)
g: torch.Tensor = my_on_off_filter_g(
pattern[:, 1:2, :, :],
)
b: torch.Tensor = my_on_off_filter_b(
pattern[:, 2:3, :, :],
)
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
return new_tensor
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The training image comes in
1. is cropped from a random position
2. is randomly horizontally flipped
3. is randomly color jitteres
4. on/off filteres
5. returned.
This is a 3 channel version (e.g. r,g,b channels).
"""
assert len(cfg.image_statistics.mean) == 3
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
tv.transforms.ColorJitter(
brightness=cfg.augmentation.jitter_brightness,
contrast=cfg.augmentation.jitter_contrast,
saturation=cfg.augmentation.jitter_saturation,
hue=cfg.augmentation.jitter_hue,
),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
# => On/Off
my_on_off_filter_r: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[0])
my_on_off_filter_g: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[1])
my_on_off_filter_b: OnOffFilter = OnOffFilter(p=cfg.image_statistics.mean[2])
r: torch.Tensor = my_on_off_filter_r(
pattern[:, 0:1, :, :],
)
g: torch.Tensor = my_on_off_filter_g(
pattern[:, 1:2, :, :],
)
b: torch.Tensor = my_on_off_filter_b(
pattern[:, 2:3, :, :],
)
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
return new_tensor
class OnOffFilter(torch.nn.Module):
def __init__(self, p: float = 0.5) -> None:
super(OnOffFilter, self).__init__()
self.p: float = p
def forward(self, tensor: torch.Tensor) -> torch.Tensor:
assert tensor.shape[1] == 1
tensor_clone = 2.0 * (tensor - self.p)
temp_0: torch.Tensor = torch.where(
tensor_clone < 0.0,
-tensor_clone,
tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype),
)
temp_1: torch.Tensor = torch.where(
tensor_clone >= 0.0,
tensor_clone,
tensor_clone.new_zeros(tensor_clone.shape, dtype=tensor_clone.dtype),
)
new_tensor: torch.Tensor = torch.cat((temp_0, temp_1), dim=1)
return new_tensor
def __repr__(self) -> str:
return self.__class__.__name__ + "(p={0})".format(self.p)
if __name__ == "__main__":
pass

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

View file

@ -1,164 +0,0 @@
# MIT License
# Copyright 2022 University of Bremen
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# David Rotermund ( davrot@uni-bremen.de )
#
#
# Release history:
# ================
# 1.0.0 -- 01.05.2022: first release
#
#
# %%
from dataclasses import dataclass, field
import numpy as np
import torch
import os
@dataclass
class Network:
"""Parameters of the network. The details about
its layers and the number of output neurons."""
number_of_output_neurons: int = field(default=0)
forward_kernel_size: list[list[int]] = field(default_factory=list)
forward_neuron_numbers: list[list[int]] = field(default_factory=list)
strides: list[list[int]] = field(default_factory=list)
dilation: list[list[int]] = field(default_factory=list)
padding: list[list[int]] = field(default_factory=list)
is_pooling_layer: list[bool] = field(default_factory=list)
w_trainable: list[bool] = field(default_factory=list)
eps_xy_trainable: list[bool] = field(default_factory=list)
eps_xy_mean: list[bool] = field(default_factory=list)
@dataclass
class LearningParameters:
"""Parameter required for training"""
loss_coeffs_mse: float = field(default=0.5)
loss_coeffs_kldiv: float = field(default=1.0)
learning_rate_gamma_w: float = field(default=-1.0)
learning_rate_gamma_eps_xy: float = field(default=-1.0)
learning_rate_threshold_w: float = field(default=0.00001)
learning_rate_threshold_eps_xy: float = field(default=0.00001)
learning_active: bool = field(default=True)
weight_noise_amplitude: float = field(default=0.01)
eps_xy_intitial: float = field(default=0.1)
test_every_x_learning_steps: int = field(default=50)
test_during_learning: bool = field(default=True)
lr_scheduler_factor: float = field(default=0.75)
lr_scheduler_patience: int = field(default=10)
optimizer_name: str = field(default="Adam")
lr_schedule_name: str = field(default="ReduceLROnPlateau")
number_of_batches_for_one_update: int = field(default=1)
alpha_number_of_iterations: int = field(default=0)
overload_path: str = field(default="./Previous")
@dataclass
class Augmentation:
"""Parameters used for data augmentation."""
crop_width_in_pixel: int = field(default=2)
flip_p: float = field(default=0.5)
jitter_brightness: float = field(default=0.5)
jitter_contrast: float = field(default=0.1)
jitter_saturation: float = field(default=0.1)
jitter_hue: float = field(default=0.15)
@dataclass
class ImageStatistics:
"""(Statistical) information about the input. i.e.
mean values and the x and y size of the input"""
mean: list[float] = field(default_factory=list)
the_size: list[int] = field(default_factory=list)
@dataclass
class Config:
"""Master config class."""
# Sub classes
network_structure: Network = field(default_factory=Network)
learning_parameters: LearningParameters = field(default_factory=LearningParameters)
augmentation: Augmentation = field(default_factory=Augmentation)
image_statistics: ImageStatistics = field(default_factory=ImageStatistics)
batch_size: int = field(default=500)
data_mode: str = field(default="")
learning_step: int = field(default=0)
learning_step_max: int = field(default=10000)
number_of_cpu_processes: int = field(default=-1)
number_of_spikes: int = field(default=0)
cooldown_after_number_of_spikes: int = field(default=0)
weight_path: str = field(default="./Weights/")
eps_xy_path: str = field(default="./EpsXY/")
data_path: str = field(default="./")
reduction_cooldown: float = field(default=25.0)
epsilon_0: float = field(default=1.0)
update_after_x_batch: float = field(default=1.0)
def __post_init__(self) -> None:
"""Post init determines the number of cores.
Creates the required directory and gives us an optimized
(for the amount of cores) batch size."""
number_of_cpu_processes_temp = os.cpu_count()
if self.number_of_cpu_processes < 1:
if number_of_cpu_processes_temp is None:
self.number_of_cpu_processes = 1
else:
self.number_of_cpu_processes = number_of_cpu_processes_temp
os.makedirs(self.weight_path, exist_ok=True)
os.makedirs(self.eps_xy_path, exist_ok=True)
os.makedirs(self.data_path, exist_ok=True)
self.batch_size = (
self.batch_size // self.number_of_cpu_processes
) * self.number_of_cpu_processes
self.batch_size = np.max((self.batch_size, self.number_of_cpu_processes))
self.batch_size = int(self.batch_size)
def get_epsilon_t(self):
"""Generates the time series of the basic epsilon."""
np_epsilon_t: np.ndarray = np.ones((self.number_of_spikes), dtype=np.float32)
np_epsilon_t[
self.cooldown_after_number_of_spikes : self.number_of_spikes
] /= self.reduction_cooldown
return torch.tensor(np_epsilon_t)
def get_update_after_x_pattern(self):
"""Tells us after how many pattern we need to update the weights."""
return self.batch_size * self.update_after_x_batch

View file

@ -1 +0,0 @@
Performance reached (test data correct classifications): 99.26%

View file

@ -1,31 +0,0 @@
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import numpy as np
import matplotlib.pyplot as plt
from tensorboard.backend.event_processing import event_accumulator
filename: str = "events.out.tfevents.1651325827.fedora.115860.0"
acc = event_accumulator.EventAccumulator(filename)
acc.Reload()
# What is available?
# available_scalar = acc.Tags()["scalars"]
# print("Available Scalars")
# print(available_scalar)
which_scalar: str = "Test Number Correct"
te = acc.Scalars(which_scalar)
temp: list = []
for te_item in te:
temp.append((te_item[1], te_item[2]))
temp_np = np.array(temp)
plt.semilogy(temp_np[:, 0], (1.0 - (temp_np[:, 1] / 10000)) * 100)
plt.xlabel("Epochs")
plt.ylabel("Error [%]")
plt.savefig("Error.png")
plt.show()

View file

@ -1,180 +0,0 @@
# %%
import torch
from Dataset import DatasetMNIST
# Some parameters
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int = 576
number_of_output_channels_full1: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.Softmax(dim=1),
)
# %%
import torchvision
test_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.CenterCrop((24, 24))],
)
train_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.RandomCrop((24, 24))],
)
path_pattern: str = "./DATA_MNIST/"
path_label: str = "./DATA_MNIST/"
dataset_train = DatasetMNIST(
train=True, path_pattern=path_pattern, path_label=path_label
)
dataset_test = DatasetMNIST(
train=False, path_pattern=path_pattern, path_label=path_label
)
batch_size_train: int = 100
batch_size_test: int = 100
train_data_load = torch.utils.data.DataLoader(
dataset_train, batch_size=batch_size_train, shuffle=True
)
test_data_load = torch.utils.data.DataLoader(
dataset_test, batch_size=batch_size_test, shuffle=False
)
# %%
# The optimizer
optimizer = torch.optim.Adam(network.parameters(), lr=0.001)
# The LR Scheduler
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.75)
# %%
number_of_test_pattern: int = dataset_test.__len__()
number_of_train_pattern: int = dataset_train.__len__()
number_of_epoch: int = 50
# %%
import time
from torch.utils.tensorboard import SummaryWriter
tb = SummaryWriter()
# %%
loss_function = torch.nn.CrossEntropyLoss()
for epoch_id in range(0, number_of_epoch):
print(f"Epoch: {epoch_id}")
t_start: float = time.perf_counter()
train_loss: float = 0.0
train_correct: int = 0
train_number: int = 0
test_correct: int = 0
test_number: int = 0
# Switch the network into training mode
network.train()
# This runs in total for one epoch split up into mini-batches
for image, target in train_data_load:
# Clean the gradient
optimizer.zero_grad()
output = network(train_processing_chain(image))
loss = loss_function(output, target)
train_loss += loss.item()
train_correct += (output.argmax(dim=1) == target).sum().numpy()
train_number += target.shape[0]
# Calculate backprop
loss.backward()
# Update the parameter
optimizer.step()
# Update the learning rate
lr_scheduler.step(train_loss)
t_training: float = time.perf_counter()
# Switch the network into evalution mode
network.eval()
with torch.no_grad():
for image, target in test_data_load:
output = network(test_processing_chain(image))
test_correct += (output.argmax(dim=1) == target).sum().numpy()
test_number += target.shape[0]
t_testing = time.perf_counter()
perfomance_test_correct: float = 100.0 * test_correct / test_number
perfomance_train_correct: float = 100.0 * train_correct / train_number
tb.add_scalar("Train Loss", train_loss, epoch_id)
tb.add_scalar("Train Number Correct", train_correct, epoch_id)
tb.add_scalar("Test Number Correct", test_correct, epoch_id)
print(f"Training: Loss={train_loss:.5f} Correct={perfomance_train_correct:.2f}%")
print(f"Testing: Correct={perfomance_test_correct:.2f}%")
print(
f"Time: Training={(t_training-t_start):.1f}sec, Testing={(t_testing-t_training):.1f}sec"
)
torch.save(network, "Model_MNIST_A_" + str(epoch_id) + ".pt")
print()
# %%
tb.close()

View file

@ -1,161 +0,0 @@
# MIT License
# Copyright 2022 University of Bremen
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
# THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
#
# David Rotermund ( davrot@uni-bremen.de )
#
#
# Release history:
# ================
# 1.0.0 -- 01.05.2022: first release
#
#
import numpy as np
# [offset] [type] [value] [description]
# 0000 32 bit integer 0x00000801(2049) magic number (MSB first)
# 0004 32 bit integer 60000 number of items
# 0008 unsigned byte ?? label
# 0009 unsigned byte ?? label
# ........
# xxxx unsigned byte ?? label
# The labels values are 0 to 9.
class ReadLabel:
"""Class for reading the labels from an MNIST label file"""
def __init__(self, filename):
self.filename: str = filename
self.data = self.read_from_file(filename)
def read_from_file(self, filename):
int32_data = np.dtype(np.uint32)
int32_data = int32_data.newbyteorder(">")
file = open(filename, "rb")
magic_flag = np.frombuffer(file.read(4), int32_data)[0]
if magic_flag != 2049:
data = np.zeros(0)
number_of_elements = 0
else:
number_of_elements = np.frombuffer(file.read(4), int32_data)[0]
if number_of_elements < 1:
data = np.zeros(0)
else:
data = np.frombuffer(file.read(number_of_elements), dtype=np.uint8)
file.close()
return data
# [offset] [type] [value] [description]
# 0000 32 bit integer 0x00000803(2051) magic number
# 0004 32 bit integer 60000 number of images
# 0008 32 bit integer 28 number of rows
# 0012 32 bit integer 28 number of columns
# 0016 unsigned byte ?? pixel
# 0017 unsigned byte ?? pixel
# ........
# xxxx unsigned byte ?? pixel
# Pixels are organized row-wise.
# Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).
class ReadPicture:
"""Class for reading the images from an MNIST image file"""
def __init__(self, filename):
self.filename: str = filename
self.data = self.read_from_file(filename)
def read_from_file(self, filename):
int32_data = np.dtype(np.uint32)
int32_data = int32_data.newbyteorder(">")
file = open(filename, "rb")
magic_flag = np.frombuffer(file.read(4), int32_data)[0]
if magic_flag != 2051:
data = np.zeros(0)
number_of_elements = 0
else:
number_of_elements = np.frombuffer(file.read(4), int32_data)[0]
if number_of_elements < 1:
data = np.zeros(0)
number_of_rows = 0
else:
number_of_rows = np.frombuffer(file.read(4), int32_data)[0]
if number_of_rows != 28:
data = np.zeros(0)
number_of_columns = 0
else:
number_of_columns = np.frombuffer(file.read(4), int32_data)[0]
if number_of_columns != 28:
data = np.zeros(0)
else:
data = np.frombuffer(
file.read(number_of_elements * number_of_rows * number_of_columns),
dtype=np.uint8,
)
data = data.reshape(number_of_elements, number_of_columns, number_of_rows)
file.close()
return data
def proprocess_data_set(test_mode):
if test_mode is True:
filename_out_pattern: str = "TestPatternStorage.npy"
filename_out_label: str = "TestLabelStorage.npy"
filename_in_image: str = "t10k-images-idx3-ubyte"
filename_in_label = "t10k-labels-idx1-ubyte"
else:
filename_out_pattern = "TrainPatternStorage.npy"
filename_out_label = "TrainLabelStorage.npy"
filename_in_image = "train-images-idx3-ubyte"
filename_in_label = "train-labels-idx1-ubyte"
pictures = ReadPicture(filename_in_image)
labels = ReadLabel(filename_in_label)
# Down to 0 ... 1.0
max_value = np.max(pictures.data.astype(np.float32))
d = np.float32(pictures.data.astype(np.float32) / max_value)
label_storage = np.uint64(labels.data)
pattern_storage = d.astype(np.float32)
np.save(filename_out_pattern, pattern_storage)
np.save(filename_out_label, label_storage)
proprocess_data_set(True)
proprocess_data_set(False)

View file

@ -1,8 +0,0 @@
http://yann.lecun.com/exdb/mnist/
We need:
t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz
Then
gzip -d *.gz
python convert.py