#include "MultiApp.h" #include #include #include #include #include #include #include #include #include "approximation_multiplication_function.cpp" #include "gpu_approximation_multiplication_function.cu" MultiApp::MultiApp() { }; MultiApp::~MultiApp() { }; bool MultiApp::update(float* np_input_pointer, float* np_weight_pointer, float* np_output_pointer, int64_t pattern_dim, int64_t feature_dim, int64_t x_dim, int64_t y_dim, int64_t input_channel_dim, int64_t id_pattern, bool approximation_enable, int64_t number_of_trunc_bits, int64_t number_of_frac_bits) { assert((id_pattern >= 0)); assert((id_pattern < pattern_dim)); float* np_input_pointer_pattern; float* np_output_pointer_pattern; float* input_ptr; float* output_ptr; float* w_ptr; uint64_t pattern_size = input_channel_dim; std::vector ap_h_vector; ap_h_vector.resize(pattern_size); float* ap_h_ptr = ap_h_vector.data(); std::vector ap_x_vector; ap_x_vector.resize(pattern_size); uint32_t* ap_x_ptr = ap_x_vector.data(); std::vector ap_y_vector; ap_y_vector.resize(pattern_size); uint32_t* ap_y_ptr = ap_y_vector.data(); std::vector ap_x_exponent_vector; ap_x_exponent_vector.resize(pattern_size); uint32_t* ap_x_exponent_ptr = ap_x_exponent_vector.data(); std::vector ap_y_exponent_vector; ap_y_exponent_vector.resize(pattern_size); uint32_t* ap_y_exponent_ptr = ap_y_exponent_vector.data(); std::vector ap_h_exponent_vector; ap_h_exponent_vector.resize(pattern_size); uint32_t* ap_h_exponent_ptr = ap_h_exponent_vector.data(); std::vector ap_res_vector; ap_res_vector.resize(pattern_size); uint64_t* ap_res_ptr = ap_res_vector.data(); uint32_t ap_mask = static_cast(pow(2, number_of_trunc_bits)) - 1; std::vector sign_temp_vector; sign_temp_vector.resize(pattern_size); uint32_t* sign_temp_ptr = sign_temp_vector.data(); uint64_t input_pattern_size = input_channel_dim * x_dim * y_dim; uint64_t output_pattern_size = feature_dim * x_dim * y_dim; np_input_pointer_pattern = np_input_pointer + id_pattern * input_pattern_size; np_output_pointer_pattern = np_output_pointer + id_pattern * output_pattern_size; uint64_t counter; uint64_t counter_x; uint64_t counter_y; uint64_t counter_feature; uint64_t pos_xy; uint64_t pos_xy_if; float temp_sum; uint64_t pattern_c_2 = x_dim * y_dim; for (counter_x = 0; counter_x < x_dim; counter_x++) { for (counter_y = 0; counter_y < y_dim; counter_y++) { pos_xy = counter_y + counter_x * y_dim; for (counter_feature = 0; counter_feature < feature_dim; counter_feature++) { pos_xy_if = counter_feature * pattern_c_2 + pos_xy; input_ptr = np_input_pointer_pattern + pos_xy; output_ptr = np_output_pointer_pattern + pos_xy_if; w_ptr = np_weight_pointer + counter_feature * input_channel_dim; #pragma omp simd for (counter = 0; counter < pattern_size; counter++) { ap_h_ptr[counter] = input_ptr[counter * pattern_c_2]; } approximation_multiplication_function( ap_h_ptr, w_ptr, pattern_size, number_of_trunc_bits, number_of_frac_bits, ap_x_ptr, ap_y_ptr, ap_x_exponent_ptr, ap_y_exponent_ptr, ap_h_exponent_ptr, ap_mask, ap_res_ptr, sign_temp_ptr, approximation_enable); temp_sum = 0.0; #pragma omp simd reduction(+ \ : temp_sum) for (counter = 0; counter < pattern_size; counter++) { temp_sum += ap_h_ptr[counter]; } output_ptr[0] = temp_sum; } } } return true; }; bool MultiApp::update_with_init_vector_multi_pattern( int64_t np_input_pointer_addr, int64_t np_weight_pointer_addr, int64_t np_output_pointer_addr, int64_t pattern_dim, int64_t feature_dim, int64_t x_dim, int64_t y_dim, int64_t input_channel_dim, int64_t number_of_processes, bool approximation_enable, int64_t number_of_trunc_bits, int64_t number_of_frac) { int64_t number_of_pattern = pattern_dim; int64_t pattern_id; float* np_input_pointer = (float*)np_input_pointer_addr; float* np_weight_pointer = (float*)np_weight_pointer_addr; float* np_output_pointer = (float*)np_output_pointer_addr; assert((np_input_pointer != nullptr)); assert((np_output_pointer != nullptr)); assert((np_weight_pointer != nullptr)); assert((pattern_dim > 0)); assert((feature_dim > 0)); assert((x_dim > 0)); assert((y_dim > 0)); assert((input_channel_dim > 0)); if (number_of_processes > 0) { omp_set_num_threads(number_of_processes); // For debugging: Only one thread // omp_set_num_threads(1); #pragma omp parallel for for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) { update(np_input_pointer, np_weight_pointer, np_output_pointer, pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim, pattern_id, approximation_enable, number_of_trunc_bits, number_of_frac); } } else { update_gpu(np_input_pointer, np_weight_pointer, np_output_pointer, pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim, approximation_enable, number_of_trunc_bits, number_of_frac); } return true; }; __global__ void kernel_approx_multiplication(float* __restrict__ input_pointer, float* __restrict__ weight_pointer, float* __restrict__ output_pointer, uint64_t pattern_dim, uint64_t feature_dim, uint64_t x_dim, uint64_t y_dim, uint64_t input_channel_dim, size_t max_threadable_tasks, uint64_t input_index_scale, uint64_t number_of_frac_bits, bool approximation_enable, uint64_t number_of_trunc_bits, uint32_t ap_mask) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx < max_threadable_tasks) { int pattern_id = idx / feature_dim; int feature_id = idx - (pattern_id * feature_dim); int x_id = blockIdx.y; int y_id = blockIdx.z; float* weight_pointer_sub = weight_pointer + feature_id * input_channel_dim; float* input_pointer_sub = input_pointer + pattern_id * input_channel_dim * x_dim * y_dim + x_id * y_dim + y_id; float* output_pointer_sub = output_pointer + pattern_id * feature_dim * x_dim * y_dim + feature_id * x_dim * y_dim + x_id * y_dim + y_id; *output_pointer_sub = 0.0; size_t counter; for (counter = 0; counter < input_channel_dim; counter++) { *output_pointer_sub += gpu_approximation_multiplication_function( weight_pointer_sub[counter], input_pointer_sub[counter * input_index_scale], number_of_frac_bits, approximation_enable, number_of_trunc_bits, ap_mask); } } }; bool MultiApp::update_gpu(float* np_input_pointer, float* np_weight_pointer, float* np_output_pointer, uint64_t pattern_dim, uint64_t feature_dim, uint64_t x_dim, uint64_t y_dim, uint64_t input_channel_dim, bool approximation_enable, uint64_t number_of_trunc_bits, uint64_t number_of_frac_bits) { uint32_t ap_mask = static_cast(pow(2, number_of_trunc_bits)) - 1; // std::cout << approximation_enable << std::endl; // std::cout << number_of_trunc_bits << std::endl; // std::cout << number_of_frac_bits << std::endl; cudaError_t status; assert((x_dim < 65535)); assert((y_dim < 65535)); // ////////////////////////////////////// // Get infos about the device // ////////////////////////////////////// int device; cudaDeviceProp prop; status = cudaGetDevice(&device); assert((status == cudaSuccess)); // std::cout << "Device ID: " << device << std::endl; status = cudaGetDeviceProperties(&prop, device); assert((status == cudaSuccess)); // std::cout << "Device name: " << prop.name << std::endl; // ////////////////////////////////////// // Calculate the distribution on the GPU // ////////////////////////////////////// int min_grid_size; int block_size; int grid_size; size_t dynamic_s_mem_size = 0; size_t max_threadable_tasks = pattern_dim * feature_dim * x_dim * y_dim; // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=blocksize#occupancy-calculator status = cudaOccupancyMaxPotentialBlockSize(&min_grid_size, &block_size, (void*)kernel_approx_multiplication, dynamic_s_mem_size, max_threadable_tasks); assert((status == cudaSuccess)); // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications // Maximum dimensionality of grid of thread blocks: 3 // Maximum x -dimension of a grid of thread blocks: (2^31)-1 // Maximum y- or z-dimension of a grid of thread blocks: 65535 // Round up according to array size grid_size = ((pattern_dim * feature_dim) + block_size - 1) / block_size; // std::cout << min_grid_size << std::endl; // std::cout << grid_size << std::endl; // std::cout << block_size << std::endl; // std::cout << max_threadable_tasks << std::endl; dim3 grid(grid_size, x_dim, y_dim); kernel_approx_multiplication<<>>(np_input_pointer, np_weight_pointer, np_output_pointer, pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim, (pattern_dim * feature_dim), (x_dim * y_dim), number_of_frac_bits, approximation_enable, number_of_trunc_bits, ap_mask); cudaDeviceSynchronize(); return true; };