# MIT License # Copyright 2022 University of Bremen # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR # THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # # David Rotermund ( davrot@uni-bremen.de ) # # # Release history: # ================ # 1.0.0 -- 01.05.2022: first release # # # %% from dataclasses import dataclass, field import numpy as np import torch import os @dataclass class Network: """Parameters of the network. The details about its layers and the number of output neurons.""" number_of_output_neurons: int = field(default=0) forward_neuron_numbers: list[list[int]] = field(default_factory=list) is_pooling_layer: list[bool] = field(default_factory=list) forward_kernel_size: list[list[int]] = field(default_factory=list) strides: list[list[int]] = field(default_factory=list) dilation: list[list[int]] = field(default_factory=list) padding: list[list[int]] = field(default_factory=list) w_trainable: list[bool] = field(default_factory=list) eps_xy_trainable: list[bool] = field(default_factory=list) eps_xy_mean: list[bool] = field(default_factory=list) @dataclass class LearningParameters: """Parameter required for training""" learning_active: bool = field(default=True) loss_coeffs_mse: float = field(default=0.5) loss_coeffs_kldiv: float = field(default=1.0) optimizer_name: str = field(default="Adam") learning_rate_gamma_w: float = field(default=-1.0) learning_rate_gamma_eps_xy: float = field(default=-1.0) learning_rate_threshold_w: float = field(default=0.00001) learning_rate_threshold_eps_xy: float = field(default=0.00001) lr_schedule_name: str = field(default="ReduceLROnPlateau") lr_scheduler_factor_w: float = field(default=0.75) lr_scheduler_patience_w: int = field(default=-1) lr_scheduler_factor_eps_xy: float = field(default=0.75) lr_scheduler_patience_eps_xy: int = field(default=-1) number_of_batches_for_one_update: int = field(default=1) overload_path: str = field(default="./Previous") weight_noise_amplitude: float = field(default=0.01) eps_xy_intitial: float = field(default=0.1) test_every_x_learning_steps: int = field(default=50) test_during_learning: bool = field(default=True) alpha_number_of_iterations: int = field(default=0) @dataclass class Augmentation: """Parameters used for data augmentation.""" crop_width_in_pixel: int = field(default=2) flip_p: float = field(default=0.5) jitter_brightness: float = field(default=0.5) jitter_contrast: float = field(default=0.1) jitter_saturation: float = field(default=0.1) jitter_hue: float = field(default=0.15) use_on_off_filter: bool = field(default=True) @dataclass class ImageStatistics: """(Statistical) information about the input. i.e. mean values and the x and y size of the input""" mean: list[float] = field(default_factory=list) the_size: list[int] = field(default_factory=list) @dataclass class Config: """Master config class.""" # Sub classes network_structure: Network = field(default_factory=Network) learning_parameters: LearningParameters = field(default_factory=LearningParameters) augmentation: Augmentation = field(default_factory=Augmentation) image_statistics: ImageStatistics = field(default_factory=ImageStatistics) batch_size: int = field(default=500) data_mode: str = field(default="") learning_step: int = field(default=0) learning_step_max: int = field(default=10000) number_of_cpu_processes: int = field(default=-1) number_of_spikes: int = field(default=0) cooldown_after_number_of_spikes: int = field(default=0) weight_path: str = field(default="./Weights/") eps_xy_path: str = field(default="./EpsXY/") data_path: str = field(default="./") reduction_cooldown: float = field(default=25.0) epsilon_0: float = field(default=1.0) update_after_x_batch: float = field(default=1.0) def __post_init__(self) -> None: """Post init determines the number of cores. Creates the required directory and gives us an optimized (for the amount of cores) batch size.""" number_of_cpu_processes_temp = os.cpu_count() if self.number_of_cpu_processes < 1: if number_of_cpu_processes_temp is None: self.number_of_cpu_processes = 1 else: self.number_of_cpu_processes = number_of_cpu_processes_temp os.makedirs(self.weight_path, exist_ok=True) os.makedirs(self.eps_xy_path, exist_ok=True) os.makedirs(self.data_path, exist_ok=True) self.batch_size = ( self.batch_size // self.number_of_cpu_processes ) * self.number_of_cpu_processes self.batch_size = np.max((self.batch_size, self.number_of_cpu_processes)) self.batch_size = int(self.batch_size) def get_epsilon_t(self): """Generates the time series of the basic epsilon.""" np_epsilon_t: np.ndarray = np.ones((self.number_of_spikes), dtype=np.float32) np_epsilon_t[ self.cooldown_after_number_of_spikes : self.number_of_spikes ] /= self.reduction_cooldown return torch.tensor(np_epsilon_t) def get_update_after_x_pattern(self): """Tells us after how many pattern we need to update the weights.""" return self.batch_size * self.update_after_x_batch