#include "MultiplicationApproximationCPU.h" #include #include #include #include #include #include #include #include #include "approximation_multiplication_function.h" MultiplicationApproximationCPU::MultiplicationApproximationCPU() { }; MultiplicationApproximationCPU::~MultiplicationApproximationCPU() { }; void MultiplicationApproximationCPU::entrypoint( int64_t np_input_pointer_addr, int64_t np_weight_pointer_addr, int64_t np_output_pointer_addr, int64_t pattern_dim, int64_t feature_dim, int64_t x_dim, int64_t y_dim, int64_t input_channel_dim, int64_t number_of_processes, bool approximation_enable, int64_t number_of_trunc_bits, int64_t number_of_frac) { size_t number_of_pattern = pattern_dim; float* np_input_pointer = (float*)np_input_pointer_addr; float* np_weight_pointer = (float*)np_weight_pointer_addr; float* np_output_pointer = (float*)np_output_pointer_addr; assert((np_input_pointer != nullptr)); assert((np_output_pointer != nullptr)); assert((np_weight_pointer != nullptr)); assert((pattern_dim > 0)); assert((feature_dim > 0)); assert((x_dim > 0)); assert((y_dim > 0)); assert((input_channel_dim > 0)); assert((number_of_processes > 0)); omp_set_num_threads(number_of_processes); // For debugging: Only one thread // omp_set_num_threads(1); #pragma omp parallel for for (size_t pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) { calculate(np_input_pointer, np_weight_pointer, np_output_pointer, pattern_dim, feature_dim, x_dim, y_dim, input_channel_dim, pattern_id, approximation_enable, number_of_trunc_bits, number_of_frac); } return; }; void MultiplicationApproximationCPU::calculate( float* np_input_pointer, float* np_weight_pointer, float* np_output_pointer, size_t pattern_dim, size_t feature_dim, size_t x_dim, size_t y_dim, size_t input_channel_dim, size_t id_pattern, bool approximation_enable, size_t number_of_trunc_bits, size_t number_of_frac_bits) { assert((id_pattern >= 0)); assert((id_pattern < pattern_dim)); float* np_input_pointer_pattern; float* np_output_pointer_pattern; float* input_ptr; float* output_ptr; float* w_ptr; size_t pattern_size = input_channel_dim; std::vector ap_h_vector; ap_h_vector.resize(pattern_size); float* ap_h_ptr = ap_h_vector.data(); std::vector ap_x_vector; ap_x_vector.resize(pattern_size); uint32_t* ap_x_ptr = ap_x_vector.data(); std::vector ap_y_vector; ap_y_vector.resize(pattern_size); uint32_t* ap_y_ptr = ap_y_vector.data(); std::vector ap_x_exponent_vector; ap_x_exponent_vector.resize(pattern_size); uint32_t* ap_x_exponent_ptr = ap_x_exponent_vector.data(); std::vector ap_y_exponent_vector; ap_y_exponent_vector.resize(pattern_size); uint32_t* ap_y_exponent_ptr = ap_y_exponent_vector.data(); std::vector ap_h_exponent_vector; ap_h_exponent_vector.resize(pattern_size); uint32_t* ap_h_exponent_ptr = ap_h_exponent_vector.data(); std::vector ap_res_vector; ap_res_vector.resize(pattern_size); uint64_t* ap_res_ptr = ap_res_vector.data(); uint32_t ap_mask = static_cast(pow(2, number_of_trunc_bits)) - 1; std::vector sign_temp_vector; sign_temp_vector.resize(pattern_size); uint32_t* sign_temp_ptr = sign_temp_vector.data(); size_t input_pattern_size = input_channel_dim * x_dim * y_dim; size_t output_pattern_size = feature_dim * x_dim * y_dim; np_input_pointer_pattern = np_input_pointer + id_pattern * input_pattern_size; np_output_pointer_pattern = np_output_pointer + id_pattern * output_pattern_size; size_t pos_xy; size_t pos_xy_if; float temp_sum; size_t pattern_c_2 = x_dim * y_dim; for (size_t counter_x = 0; counter_x < x_dim; counter_x++) { for (size_t counter_y = 0; counter_y < y_dim; counter_y++) { pos_xy = counter_y + counter_x * y_dim; for (size_t counter_feature = 0; counter_feature < feature_dim; counter_feature++) { pos_xy_if = counter_feature * pattern_c_2 + pos_xy; input_ptr = np_input_pointer_pattern + pos_xy; output_ptr = np_output_pointer_pattern + pos_xy_if; w_ptr = np_weight_pointer + counter_feature * input_channel_dim; #pragma omp simd for (size_t counter = 0; counter < pattern_size; counter++) { ap_h_ptr[counter] = input_ptr[counter * pattern_c_2]; } approximation_multiplication_function( ap_h_ptr, w_ptr, pattern_size, number_of_trunc_bits, number_of_frac_bits, ap_x_ptr, ap_y_ptr, ap_x_exponent_ptr, ap_y_exponent_ptr, ap_h_exponent_ptr, ap_mask, ap_res_ptr, sign_temp_ptr, approximation_enable); temp_sum = 0.0; #pragma omp simd reduction(+ \ : temp_sum) for (size_t counter = 0; counter < pattern_size; counter++) { temp_sum += ap_h_ptr[counter]; } output_ptr[0] = temp_sum; } } } return; };