# %% import torch from network.calculate_output_size import calculate_output_size from network.Parameter import Config from network.SbS import SbS from network.SplitOnOffLayer import SplitOnOffLayer from network.Conv2dApproximation import Conv2dApproximation def build_network( cfg: Config, device: torch.device, default_dtype: torch.dtype, logging ) -> torch.nn.Sequential: network = torch.nn.Sequential() input_size: list[list[int]] = [] input_size.append(cfg.image_statistics.the_size) for layer_id in range(0, len(cfg.network_structure.layer_type)): # ############################################################# # Show infos about the layer: # ############################################################# logging.info("") logging.info(f"Layer ID: {layer_id}") logging.info(f"Layer type: {cfg.network_structure.layer_type[layer_id]}") # ############################################################# # Fill in the default values # ############################################################# kernel_size: list[int] = [1, 1] if len(cfg.network_structure.forward_kernel_size) > layer_id: kernel_size = cfg.network_structure.forward_kernel_size[layer_id] padding: list[int] = [0, 0] if len(cfg.network_structure.padding) > layer_id: padding = cfg.network_structure.padding[layer_id] dilation: list[int] = [1, 1] if len(cfg.network_structure.dilation) > layer_id: dilation = cfg.network_structure.dilation[layer_id] strides: list[int] = [1, 1] if len(cfg.network_structure.strides) > layer_id: if len(cfg.network_structure.strides[layer_id]) == 2: strides = cfg.network_structure.strides[layer_id] in_channels: int = -1 out_channels: int = -1 if len(cfg.network_structure.forward_neuron_numbers) > layer_id: if len(cfg.network_structure.forward_neuron_numbers[layer_id]) == 2: in_channels = cfg.network_structure.forward_neuron_numbers[layer_id][0] out_channels = cfg.network_structure.forward_neuron_numbers[layer_id][1] weight_noise_range: list[float] = [1.0, 1.1] if len(cfg.learning_parameters.weight_noise_range) == 2: weight_noise_range = [ float(cfg.learning_parameters.weight_noise_range[0]), float(cfg.learning_parameters.weight_noise_range[1]), ] logging.info(f"Input channels: {in_channels}") logging.info(f"Output channels: {out_channels}") logging.info(f"Kernel size: {kernel_size}") logging.info(f"Stride: {strides}") logging.info(f"Dilation: {dilation}") logging.info(f"Padding: {padding}") # Conv2D bias: bool = True # Approx settings approximation_enable: bool = False if len(cfg.approximation_setting.approximation_enable) > layer_id: approximation_enable = cfg.approximation_setting.approximation_enable[ layer_id ] logging.info(f"Approximation Enable: {approximation_enable}") elif len(cfg.approximation_setting.approximation_enable) == 1: approximation_enable = cfg.approximation_setting.approximation_enable[0] logging.info(f"Approximation Enable: {approximation_enable}") number_of_trunc_bits: int = -1 if len(cfg.approximation_setting.number_of_trunc_bits) > layer_id: number_of_trunc_bits = cfg.approximation_setting.number_of_trunc_bits[ layer_id ] logging.info(f"Number of trunc bits: {number_of_trunc_bits}") elif len(cfg.approximation_setting.number_of_trunc_bits) == 1: number_of_trunc_bits = cfg.approximation_setting.number_of_trunc_bits[0] logging.info(f"Number of trunc bits: {number_of_trunc_bits}") number_of_frac_bits: int = -1 if len(cfg.approximation_setting.number_of_frac_bits) > layer_id: number_of_frac_bits = cfg.approximation_setting.number_of_frac_bits[ layer_id ] logging.info(f"Number of frac bits: {number_of_trunc_bits}") elif len(cfg.approximation_setting.number_of_frac_bits) == 1: number_of_frac_bits = cfg.approximation_setting.number_of_frac_bits[0] logging.info(f"Number of frac bits: {number_of_trunc_bits}") # Weights: Trainable? w_trainable: bool = False if len(cfg.learning_parameters.w_trainable) > layer_id: w_trainable = cfg.learning_parameters.w_trainable[layer_id] elif len(cfg.learning_parameters.w_trainable) == 1: w_trainable = cfg.learning_parameters.w_trainable[0] logging.info(f"W trainable?: {w_trainable}") # SbS Setting sbs_skip_gradient_calculation: bool = False if len(cfg.learning_parameters.sbs_skip_gradient_calculation) > layer_id: sbs_skip_gradient_calculation = ( cfg.learning_parameters.sbs_skip_gradient_calculation[layer_id] ) elif len(cfg.learning_parameters.sbs_skip_gradient_calculation) == 1: sbs_skip_gradient_calculation = ( cfg.learning_parameters.sbs_skip_gradient_calculation[0] ) # ############################################################# # SbS layer: # ############################################################# if cfg.network_structure.layer_type[layer_id].upper().startswith("SBS") is True: assert in_channels > 0 assert out_channels > 0 number_of_spikes: int = -1 if len(cfg.number_of_spikes) > layer_id: number_of_spikes = cfg.number_of_spikes[layer_id] elif len(cfg.number_of_spikes) == 1: number_of_spikes = cfg.number_of_spikes[0] assert number_of_spikes > 0 logging.info( f"Layer: {layer_id} -> SbS Layer with {number_of_spikes} spikes" ) is_pooling_layer: bool = False if cfg.network_structure.layer_type[layer_id].upper().find("POOLING") != -1: is_pooling_layer = True network.append( SbS( number_of_input_neurons=in_channels, number_of_neurons=out_channels, input_size=input_size[-1], forward_kernel_size=kernel_size, number_of_spikes=number_of_spikes, epsilon_t=cfg.get_epsilon_t(number_of_spikes), epsilon_xy_intitial=cfg.learning_parameters.eps_xy_intitial, epsilon_0=cfg.epsilon_0, weight_noise_range=weight_noise_range, is_pooling_layer=is_pooling_layer, strides=strides, dilation=dilation, padding=padding, number_of_cpu_processes=cfg.number_of_cpu_processes, w_trainable=w_trainable, # keep_last_grad_scale=cfg.learning_parameters.kepp_last_grad_scale, # disable_scale_grade=cfg.learning_parameters.disable_scale_grade, forgetting_offset=cfg.forgetting_offset, skip_gradient_calculation=sbs_skip_gradient_calculation, device=device, default_dtype=default_dtype, ) ) # Adding the x,y output dimensions input_size.append(network[-1]._output_size.tolist()) network[-1]._output_layer = False if layer_id == len(cfg.network_structure.layer_type) - 1: network[-1]._output_layer = True network[-1]._local_learning = False if cfg.network_structure.layer_type[layer_id].upper().find("LOCAL") != -1: network[-1]._local_learning = True # ############################################################# # Split On Off Layer: # ############################################################# elif ( cfg.network_structure.layer_type[layer_id].upper().startswith("ONOFF") is True ): logging.info(f"Layer: {layer_id} -> Split On Off Layer") network.append( SplitOnOffLayer( device=device, default_dtype=default_dtype, ) ) input_size.append(input_size[-1]) # ############################################################# # PyTorch CONV2D layer: # ############################################################# elif ( cfg.network_structure.layer_type[layer_id].upper().startswith("CONV2D") is True ): assert in_channels > 0 assert out_channels > 0 logging.info(f"Layer: {layer_id} -> CONV2D Layer") network.append( torch.nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=(int(kernel_size[0]), int(kernel_size[1])), stride=(int(strides[0]), int(strides[1])), dilation=(int(dilation[0]), int(dilation[1])), bias=bias, padding=(int(padding[0]), int(padding[1])), device=device, dtype=default_dtype, ) ) # I need this later... network[-1]._w_trainable = w_trainable # Calculate the x,y output dimensions input_size_temp = calculate_output_size( value=input_size[-1], kernel_size=kernel_size, stride=strides, dilation=dilation, padding=padding, ).tolist() input_size.append(input_size_temp) # ############################################################# # PyTorch RELU layer: # ############################################################# elif ( cfg.network_structure.layer_type[layer_id].upper().startswith("RELU") is True ): logging.info(f"Layer: {layer_id} -> RELU Layer") network.append(torch.nn.ReLU()) input_size.append(input_size[-1]) # ############################################################# # PyTorch MAX Pooling layer: # ############################################################# elif ( cfg.network_structure.layer_type[layer_id].upper().startswith("MAX POOLING") is True ): logging.info(f"Layer: {layer_id} -> MAX POOLING Layer") network.append( torch.nn.MaxPool2d( kernel_size=(int(kernel_size[0]), int(kernel_size[1])), stride=(int(strides[0]), int(strides[1])), padding=(int(padding[0]), int(padding[1])), dilation=(int(dilation[0]), int(dilation[1])), ) ) # Calculate the x,y output dimensions input_size_temp = calculate_output_size( value=input_size[-1], kernel_size=kernel_size, stride=strides, dilation=dilation, padding=padding, ).tolist() input_size.append(input_size_temp) # ############################################################# # PyTorch Average Pooling layer: # ############################################################# elif ( cfg.network_structure.layer_type[layer_id] .upper() .startswith("AVERAGE POOLING") is True ): logging.info(f"Layer: {layer_id} -> AVERAGE POOLING Layer") network.append( torch.nn.AvgPool2d( kernel_size=(int(kernel_size[0]), int(kernel_size[1])), stride=(int(strides[0]), int(strides[1])), padding=(int(padding[0]), int(padding[1])), ) ) # Calculate the x,y output dimensions input_size_temp = calculate_output_size( value=input_size[-1], kernel_size=kernel_size, stride=strides, dilation=dilation, padding=padding, ).tolist() input_size.append(input_size_temp) # ############################################################# # Approx CONV2D layer: # ############################################################# elif ( cfg.network_structure.layer_type[layer_id] .upper() .startswith("APPROX CONV2D") is True ): assert in_channels > 0 assert out_channels > 0 logging.info(f"Layer: {layer_id} -> Approximation CONV2D Layer") network.append( Conv2dApproximation( in_channels=in_channels, out_channels=out_channels, kernel_size=(int(kernel_size[0]), int(kernel_size[1])), stride=(int(strides[0]), int(strides[1])), dilation=(int(dilation[0]), int(dilation[1])), bias=bias, padding=(int(padding[0]), int(padding[1])), device=device, dtype=default_dtype, approximation_enable=approximation_enable, number_of_trunc_bits=number_of_trunc_bits, number_of_frac=number_of_frac_bits, number_of_processes=cfg.number_of_cpu_processes, ) ) # I need this later... network[-1]._w_trainable = w_trainable # Calculate the x,y output dimensions input_size_temp = calculate_output_size( value=input_size[-1], kernel_size=kernel_size, stride=strides, dilation=dilation, padding=padding, ).tolist() input_size.append(input_size_temp) # ############################################################# # Failure becaue we didn't found the selection of layer # ############################################################# else: raise Exception( f"Unknown layer type: {cfg.network_structure.layer_type[layer_id]}" ) return network