# pytorch-sbs SbS Extension for PyTorch # Based on these scientific papers **Back-Propagation Learning in Deep Spike-By-Spike Networks** David Rotermund and Klaus R. Pawelzik Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055 https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full **Efficient Computation Based on Stochastic Spikes** Udo Ernst, David Rotermund, and Klaus Pawelzik Neural Computation (2007) 19 (5): 1313–1343. https://doi.org/10.1162/neco.2007.19.5.1313 https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes # Python It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you might get problems with older Python versions. # C++ It works without compiling the C++ modules. However it is 10x slower. You need to modify the Makefile in the C++ directory to your Python installation. In addition yoir Python installation needs the PyBind11 package installed. You might want to perform a pip install pybind11 The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile. The SbS.py autodetectes if the required C++ .so modules are in the same directory as the SbS.py file. # SbS layer class ## Variables epsilon_xy epsilon_0 epsilon_t weights kernel_size stride dilation padding output_size number_of_spikes number_of_cpu_processes number_of_neurons number_of_input_neurons h_initial alpha_number_of_iterations ## Constructor def **__init__**( self, number_of_input_neurons: int, number_of_neurons: int, input_size: list[int], forward_kernel_size: list[int], number_of_spikes: int, epsilon_t: torch.Tensor, epsilon_xy_intitial: float = 0.1, epsilon_0: float = 1.0, weight_noise_amplitude: float = 0.01, is_pooling_layer: bool = False, strides: list[int] = [1, 1], dilation: list[int] = [0, 0], padding: list[int] = [0, 0], alpha_number_of_iterations: int = 0, number_of_cpu_processes: int = 1, ) -> None: ## Methods def **initialize_weights**( self, is_pooling_layer: bool = False, noise_amplitude: float = 0.01, ) -> None: For the generation of the initital weights. Switches between normal initial random weights and pooling weights. def **initialize_epsilon_xy**( self, eps_xy_intitial: float, ) -> None: Creates initial epsilon xy matrices. def **set_h_init_to_uniform**(self) -> None: def **backup_epsilon_xy**(self) -> None: def **restore_epsilon_xy**(self) -> None: def **backup_weights(self)** -> None: def **restore_weights(self)** -> None: def **threshold_epsilon_xy**(self, threshold: float) -> None: def **threshold_weights**(self, threshold: float) -> None: def **mean_epsilon_xy**(self) -> None: def **norm_weights**(self) -> None: # Parameters in JSON file data_mode: str = field(default="") data_path: str = field(default="./") batch_size: int = field(default=500) learning_step: int = field(default=0) learning_step_max: int = field(default=10000) number_of_cpu_processes: int = field(default=-1) number_of_spikes: int = field(default=0) cooldown_after_number_of_spikes: int = field(default=0) weight_path: str = field(default="./Weights/") eps_xy_path: str = field(default="./EpsXY/") reduction_cooldown: float = field(default=25.0) epsilon_0: float = field(default=1.0) update_after_x_batch: float = field(default=1.0) ## network_structure (required!) Parameters of the network. The details about its layers and the number of output neurons. number_of_output_neurons: int = field(default=0) forward_neuron_numbers: list[list[int]] = field(default_factory=list) is_pooling_layer: list[bool] = field(default_factory=list) forward_kernel_size: list[list[int]] = field(default_factory=list) strides: list[list[int]] = field(default_factory=list) dilation: list[list[int]] = field(default_factory=list) padding: list[list[int]] = field(default_factory=list) w_trainable: list[bool] = field(default_factory=list) eps_xy_trainable: list[bool] = field(default_factory=list) eps_xy_mean: list[bool] = field(default_factory=list) ## learning_parameters Parameter required for training learning_active: bool = field(default=True) loss_coeffs_mse: float = field(default=0.5) loss_coeffs_kldiv: float = field(default=1.0) optimizer_name: str = field(default="Adam") learning_rate_gamma_w: float = field(default=-1.0) learning_rate_gamma_eps_xy: float = field(default=-1.0) learning_rate_threshold_w: float = field(default=0.00001) learning_rate_threshold_eps_xy: float = field(default=0.00001) lr_schedule_name: str = field(default="ReduceLROnPlateau") lr_scheduler_factor_w: float = field(default=0.75) lr_scheduler_patience_w: int = field(default=-1) lr_scheduler_factor_eps_xy: float = field(default=0.75) lr_scheduler_patience_eps_xy: int = field(default=-1) number_of_batches_for_one_update: int = field(default=1) overload_path: str = field(default="./Previous") weight_noise_amplitude: float = field(default=0.01) eps_xy_intitial: float = field(default=0.1) test_every_x_learning_steps: int = field(default=50) test_during_learning: bool = field(default=True) alpha_number_of_iterations: int = field(default=0) ## augmentation Parameters used for data augmentation. crop_width_in_pixel: int = field(default=2) flip_p: float = field(default=0.5) jitter_brightness: float = field(default=0.5) jitter_contrast: float = field(default=0.1) jitter_saturation: float = field(default=0.1) jitter_hue: float = field(default=0.15) ## ImageStatistics (please ignore) (Statistical) information about the input. i.e. mean values and the x and y size of the input mean: list[float] = field(default_factory=list) the_size: list[int] = field(default_factory=list)