# pytorch-sbs SbS Extension for PyTorch # Based on these scientific papers **Back-Propagation Learning in Deep Spike-By-Spike Networks** David Rotermund and Klaus R. Pawelzik Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055 https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full **Efficient Computation Based on Stochastic Spikes** Udo Ernst, David Rotermund, and Klaus Pawelzik Neural Computation (2007) 19 (5): 1313–1343. https://doi.org/10.1162/neco.2007.19.5.1313 https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes # Python It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you might get problems with older Python versions. # C++ It works without compiling the C++ modules. However it is 10x slower. You need to modify the Makefile in the C++ directory to your Python installation. In addition yoir Python installation needs the PyBind11 package installed. You might want to perform a pip install pybind11 The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile. The SbS.py autodetectes if the required C++ .so modules are in the same directory as the SbS.py file. # Parameters in JSON file ## network_structure (required!) Parameters of the network. The details about its layers and the number of output neurons. number_of_output_neurons: int = field(default=0) forward_neuron_numbers: list[list[int]] = field(default_factory=list) is_pooling_layer: list[bool] = field(default_factory=list) forward_kernel_size: list[list[int]] = field(default_factory=list) strides: list[list[int]] = field(default_factory=list) dilation: list[list[int]] = field(default_factory=list) padding: list[list[int]] = field(default_factory=list) w_trainable: list[bool] = field(default_factory=list) eps_xy_trainable: list[bool] = field(default_factory=list) eps_xy_mean: list[bool] = field(default_factory=list) ## learning_parameters Parameter required for training learning_active: bool = field(default=True) loss_coeffs_mse: float = field(default=0.5) loss_coeffs_kldiv: float = field(default=1.0) optimizer_name: str = field(default="Adam") learning_rate_gamma_w: float = field(default=-1.0) learning_rate_gamma_eps_xy: float = field(default=-1.0) learning_rate_threshold_w: float = field(default=0.00001) learning_rate_threshold_eps_xy: float = field(default=0.00001) lr_schedule_name: str = field(default="ReduceLROnPlateau") lr_scheduler_factor_w: float = field(default=0.75) lr_scheduler_patience_w: int = field(default=-1) lr_scheduler_factor_eps_xy: float = field(default=0.75) lr_scheduler_patience_eps_xy: int = field(default=-1) number_of_batches_for_one_update: int = field(default=1) overload_path: str = field(default="./Previous") weight_noise_amplitude: float = field(default=0.01) eps_xy_intitial: float = field(default=0.1) test_every_x_learning_steps: int = field(default=50) test_during_learning: bool = field(default=True) alpha_number_of_iterations: int = field(default=0) ## augmentation Parameters used for data augmentation. crop_width_in_pixel: int = field(default=2) flip_p: float = field(default=0.5) jitter_brightness: float = field(default=0.5) jitter_contrast: float = field(default=0.1) jitter_saturation: float = field(default=0.1) jitter_hue: float = field(default=0.15) ## ImageStatistics (please ignore) (Statistical) information about the input. i.e. mean values and the x and y size of the input mean: list[float] = field(default_factory=list) the_size: list[int] = field(default_factory=list)