pytorch-sbs/network/unused_code/LinearApproximation.py
2023-01-05 13:23:58 +01:00

186 lines
5.3 KiB
Python

import torch
import math
from network.CPP.PyMultiApp import MultiApp
class LinearApproximation(torch.nn.Module):
in_features: int | None = None
out_features: int | None = None
use_bias: bool = False
approximation_enable: bool = False
number_of_trunc_bits: int = -1
number_of_frac: int = -1
number_of_processes: int = 1
weights: torch.nn.parameter.Parameter
bias: torch.nn.parameter.Parameter | None
device: torch.device
dtype: torch.dtype
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
approximation_enable: bool = False,
number_of_trunc_bits: int = -1,
number_of_frac: int = -1,
number_of_processes: int = 1,
device: torch.device | None = None,
dtype: torch.dtype | None = None,
) -> None:
super().__init__()
assert device is not None
self.device = device
assert dtype is not None
self.dtype = dtype
self.in_features = in_features
self.out_channels = out_features
self.use_bias = bias
self.approximation_enable = approximation_enable
self.number_of_trunc_bits = number_of_trunc_bits
self.number_of_frac = number_of_frac
self.number_of_processes = number_of_processes
if self.use_bias is True:
self.bias: torch.nn.parameter.Parameter | None = (
torch.nn.parameter.Parameter(
torch.empty(
(out_features),
dtype=self.dtype,
device=self.device,
)
)
)
else:
self.bias = None
self.weights: torch.nn.parameter.Parameter = torch.nn.parameter.Parameter(
torch.empty(
(out_features, in_features),
dtype=self.dtype,
device=self.device,
)
)
self.functional_multi = FunctionalMultiLinear.apply
self.reset_parameters()
def reset_parameters(self) -> None:
# Stolen from original torch conv2 code
torch.nn.init.kaiming_uniform_(self.weights, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weights)
if fan_in != 0:
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input: torch.Tensor) -> torch.Tensor:
assert input.dim() == 2
parameter_list = torch.tensor(
[
int(self.approximation_enable), # 0
int(self.number_of_trunc_bits), # 1
int(self.number_of_frac), # 2
int(self.number_of_processes), # 3
],
dtype=torch.int64,
)
output = self.functional_multi(
input.unsqueeze(-1).unsqueeze(-1), self.weights, parameter_list
)
output = output.squeeze(-1).squeeze(-1)
if self.bias is not None:
output += self.bias.unsqueeze(0)
return output
class FunctionalMultiLinear(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx,
input: torch.Tensor,
weights: torch.Tensor,
parameter_list: torch.Tensor,
) -> torch.Tensor:
assert input.ndim == 4
assert input.dtype is torch.float32
assert input.is_contiguous() is True
assert weights.ndim == 2
assert weights.dtype is torch.float32
assert weights.is_contiguous() is True
assert input.shape[1] == weights.shape[1]
approximation_enable = bool(parameter_list[0])
number_of_trunc_bits = int(parameter_list[1])
number_of_frac = int(parameter_list[2])
number_of_processes = int(parameter_list[3])
assert input.device == weights.device
output = torch.zeros(
(input.shape[0], weights.shape[0], input.shape[2], input.shape[3]),
dtype=weights.dtype,
device=weights.device,
requires_grad=True,
)
assert output.is_contiguous() is True
multiplier: MultiApp = MultiApp()
multiplier.update_with_init_vector_multi_pattern(
input.data_ptr(),
weights.data_ptr(),
output.data_ptr(),
int(output.shape[0]), # pattern
int(output.shape[1]), # feature channel
int(output.shape[2]), # x
int(output.shape[3]), # y
int(input.shape[1]), # input channel
int(number_of_processes),
bool(approximation_enable),
int(number_of_trunc_bits),
int(number_of_frac),
)
ctx.save_for_backward(
input.detach(),
weights.detach(),
)
return output
@staticmethod
def backward(ctx, grad_output):
(input, weights) = ctx.saved_tensors
grad_input = (
grad_output.unsqueeze(2) * weights.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
).sum(1)
grad_weights = (
(grad_output.unsqueeze(2) * input.unsqueeze(1)).sum(0).sum(-1).sum(-1)
)
grad_parameter_list = None
return (grad_input, grad_weights, grad_parameter_list)