pytorch-sbs/network/CPP_Cuda/HDynamicCNNManyIP.cu
2023-01-05 13:23:58 +01:00

714 lines
No EOL
19 KiB
Text

#include "HDynamicCNNManyIP.h"
#include <omp.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <iostream>
HDynamicCNNManyIP::HDynamicCNNManyIP()
{
};
HDynamicCNNManyIP::~HDynamicCNNManyIP()
{
};
bool HDynamicCNNManyIP::update_entrypoint(
int64_t h_pointer_addr,
int64_t h_dim_0,
int64_t h_dim_1,
int64_t h_dim_2,
int64_t h_dim_3,
int64_t epsilon_xy_pointer_addr,
int64_t epsilon_xy_dim_0,
int64_t epsilon_xy_dim_1,
int64_t epsilon_xy_dim_2,
int64_t epsilon_t_pointer_addr,
int64_t epsilon_t_dim_0,
int64_t weights_pointer_addr,
int64_t weights_dim_0,
int64_t weights_dim_1,
int64_t input_pointer_addr,
int64_t input_dim_0,
int64_t input_dim_1,
int64_t input_dim_2,
int64_t input_dim_3,
int64_t init_vector_pointer_addr,
int64_t init_vector_dim_0,
int64_t number_of_processes,
float forgetting_offset,
int64_t gpu_tuning_factor)
{
size_t number_of_pattern = input_dim_0;
size_t h_dim = init_vector_dim_0;
float* h_init_ptr = (float*)init_vector_pointer_addr;
assert((h_init_ptr != nullptr));
assert((h_dim > 0));
float* h_pointer = (float*)h_pointer_addr;
assert((h_pointer != nullptr));
assert((h_dim_0 > 0));
assert((h_dim_1 > 0));
assert((h_dim_2 > 0));
assert((h_dim_3 > 0));
size_t h_dim_c0 = h_dim_1 * h_dim_2 * h_dim_3;
size_t h_dim_c1 = h_dim_2 * h_dim_3;
size_t h_dim_c2 = h_dim_3;
float* epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
assert((epsilon_xy_pointer != nullptr));
assert((epsilon_xy_dim_0 > 0));
assert((epsilon_xy_dim_1 > 0));
size_t epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
size_t epsilon_xy_dim_c1 = epsilon_xy_dim_2;
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
assert((epsilon_t_pointer != nullptr));
assert((epsilon_t_dim_0 > 0));
float* weights_pointer = (float*)weights_pointer_addr;
assert((weights_pointer != nullptr));
assert((weights_dim_0 > 0));
assert((weights_dim_1 > 0));
size_t weights_dim_c0 = weights_dim_1;
int64_t* input_pointer = (int64_t*)input_pointer_addr;
assert((input_pointer != nullptr));
assert((input_dim_0 > 0));
assert((input_dim_1 > 0));
assert((input_dim_2 > 0));
assert((input_dim_3 > 0));
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
size_t input_dim_c1 = input_dim_2 * input_dim_3;
size_t input_dim_c2 = input_dim_3;
assert((h_dim == weights_dim_1));
size_t number_of_spikes = input_dim_1;
size_t dim_x = input_dim_2;
size_t dim_y = input_dim_3;
float forgetting_offset_local = forgetting_offset / static_cast<float>(h_dim);
// --------------------
if (number_of_processes > 0)
{
omp_set_num_threads(number_of_processes);
size_t pattern_id;
#pragma omp parallel for
for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++)
{
update(
h_init_ptr,
h_pointer,
h_dim_c0,
h_dim_c1,
h_dim_c2,
h_dim,
epsilon_xy_pointer,
epsilon_xy_dim_c0,
epsilon_xy_dim_c1,
epsilon_t_pointer,
weights_pointer,
weights_dim_c0,
input_pointer,
input_dim_c0,
input_dim_c1,
input_dim_c2,
number_of_spikes,
dim_x,
dim_y,
forgetting_offset,
forgetting_offset_local,
pattern_id);
}
}
else
{
gpu_update(
h_init_ptr,
h_pointer,
h_dim_c0,
h_dim_c1,
h_dim_c2,
h_dim,
epsilon_xy_pointer,
epsilon_xy_dim_c0,
epsilon_xy_dim_c1,
epsilon_t_pointer,
weights_pointer,
weights_dim_c0,
input_pointer,
input_dim_c0,
input_dim_c1,
input_dim_c2,
number_of_spikes,
dim_x,
dim_y,
forgetting_offset,
forgetting_offset_local,
number_of_pattern,
gpu_tuning_factor);
}
return true;
};
bool HDynamicCNNManyIP::update(
float* h_init_ptr,
float* h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer,
float* weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
size_t number_of_spikes,
size_t dim_x,
size_t dim_y,
float forgetting_offset,
float forgetting_offset_local,
size_t pattern_id)
{
float* h_ptr;
float* epsilon_xy_ptr;
int64_t* input_ptr;
size_t counter_x;
size_t counter_y;
for (counter_x = 0; counter_x < dim_x; counter_x++)
{
for (counter_y = 0; counter_y < dim_y; counter_y++)
{
epsilon_xy_ptr = epsilon_xy_pointer +
counter_x * epsilon_xy_dim_c1 + counter_y;
h_ptr = h_pointer +
pattern_id * h_dim_c0 + counter_x * h_dim_c2 + counter_y;
input_ptr = input_pointer +
pattern_id * input_dim_c0 + counter_x * input_dim_c2 + counter_y;
update_one_ip(
h_init_ptr,
h_ptr,
h_dim_c1,
h_dim,
weights_pointer,
weights_dim_c0,
input_ptr,
input_dim_c1,
epsilon_xy_ptr,
epsilon_xy_dim_c0,
epsilon_t_pointer,
number_of_spikes,
forgetting_offset,
forgetting_offset_local);
}
}
return true;
};
void HDynamicCNNManyIP::update_one_ip(
float* h_init_ptr,
float* h_pointer,
size_t h_dim_c1,
size_t h_dim,
float* weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c1,
float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
float* epsilon_t_pointer,
size_t number_of_spikes,
float forgetting_offset,
float forgetting_offset_local)
{
float* h_temp = new float[h_dim];
float* h_subsegment = new float[h_dim];
memcpy(h_subsegment, h_init_ptr, sizeof(float) * h_dim);
size_t counter_spike;
size_t counter;
float h_temp_sum;
float temp_value;
float epsilon_subsegment;
float epsilon_scale = 1.0;
int64_t* spike;
float* w_ptr;
for (counter_spike = 0; counter_spike < number_of_spikes; counter_spike++)
{
if (epsilon_scale > 1E10)
{
temp_value = 1.0 / epsilon_scale;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] *= temp_value;
}
epsilon_scale = 1.0;
}
spike = input_pointer + counter_spike * input_dim_c1;
if (*spike >= 0)
{
epsilon_subsegment =
epsilon_xy_pointer[*spike *epsilon_xy_dim_c0] * epsilon_t_pointer[counter_spike];
w_ptr = weights_pointer + *spike * weights_dim_c0;
memcpy(h_temp, h_subsegment, sizeof(float) * h_dim);
#pragma omp simd
for (counter = 0; counter < h_dim; counter++)
{
h_temp[counter] *= w_ptr[counter];
}
h_temp_sum = 0.0;
#pragma omp simd reduction(+ : h_temp_sum)
for (counter = 0; counter < h_dim; counter++)
{
h_temp_sum += h_temp[counter];
}
if (h_temp_sum > 1E-10)
{
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++)
{
h_temp[counter] *= temp_value;
}
#pragma omp simd
for (counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] += h_temp[counter];
}
if (forgetting_offset_local > 0.0)
{
temp_value =
epsilon_scale * epsilon_subsegment * forgetting_offset_local;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] += temp_value;
}
epsilon_scale *=
1.0 + epsilon_subsegment * (1.0 + forgetting_offset);
}
else
{
epsilon_scale *= 1.0 + epsilon_subsegment * 1.0;
}
}
}
}
temp_value = 1.0 / epsilon_scale;
#pragma omp simd
for (counter = 0; counter < h_dim; counter++)
{
h_pointer[counter * h_dim_c1] =
h_subsegment[counter] * temp_value;
}
delete[] h_temp;
delete[] h_subsegment;
return;
};
__device__ void gpu_update_one_ip(
float* __restrict__ h_init_ptr,
float* __restrict__ h_pointer,
size_t h_dim_c1,
size_t h_dim,
float* __restrict__ weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c1,
float* __restrict__ epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
float* __restrict__ epsilon_t_pointer,
size_t number_of_spikes,
float forgetting_offset,
float forgetting_offset_local,
float* __restrict__ h_temp,
float* __restrict__ h_subsegment
)
{
size_t counter_spike;
size_t counter;
float h_temp_sum;
float temp_value;
float epsilon_subsegment;
float epsilon_scale = 1.0;
int64_t* spike;
float* w_ptr;
// float* h_temp = new float[h_dim];
// float* h_subsegment = new float[h_dim];
// Initialize the sub-segement
for (counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] = h_init_ptr[counter];
}
for (counter_spike = 0; counter_spike < number_of_spikes; counter_spike++)
{
if (epsilon_scale > 1E10)
{
temp_value = 1.0 / epsilon_scale;
for (counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] *= temp_value;
}
epsilon_scale = 1.0;
}
spike = input_pointer + counter_spike * input_dim_c1;
if (*spike >= 0)
{
epsilon_subsegment =
epsilon_xy_pointer[*spike *epsilon_xy_dim_c0] * epsilon_t_pointer[counter_spike];
w_ptr = weights_pointer + *spike * weights_dim_c0;
for (counter = 0; counter < h_dim; counter++)
{
h_temp[counter] = h_subsegment[counter] * w_ptr[counter];
}
h_temp_sum = 0.0;
for (counter = 0; counter < h_dim; counter++)
{
h_temp_sum += h_temp[counter];
}
if (h_temp_sum > 1E-10)
{
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
for (counter = 0; counter < h_dim; counter++)
{
h_temp[counter] *= temp_value;
}
for (counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] += h_temp[counter];
}
if (forgetting_offset_local > 0.0)
{
temp_value =
epsilon_scale * epsilon_subsegment * forgetting_offset_local;
for (counter = 0; counter < h_dim; counter++)
{
h_subsegment[counter] += temp_value;
}
epsilon_scale *=
1.0 + epsilon_subsegment * (1.0 + forgetting_offset);
}
else
{
epsilon_scale *= 1.0 + epsilon_subsegment * 1.0;
}
}
}
}
temp_value = 1.0 / epsilon_scale;
for (counter = 0; counter < h_dim; counter++)
{
h_pointer[counter * h_dim_c1] =
h_subsegment[counter] * temp_value;
}
// delete[] h_temp;
// delete[] h_subsegment;
return;
};
__global__ void kernel_spike_generation(
float* __restrict__ h_init_ptr,
float* __restrict__ h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* __restrict__ weights_pointer,
size_t weights_dim_c0,
int64_t* __restrict__ input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
float* __restrict__ epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* __restrict__ epsilon_t_pointer,
size_t number_of_spikes,
float forgetting_offset,
float forgetting_offset_local,
size_t dim_x,
size_t dim_y,
size_t dim_xy,
size_t max_threadable_tasks,
float* __restrict__ temp_memory_a,
float* __restrict__ temp_memory_b
)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < max_threadable_tasks)
{
float* h_ptr;
float* epsilon_xy_ptr;
int64_t* input_ptr;
float* temp_memory_ptr_a = temp_memory_a + idx * h_dim;
float* temp_memory_ptr_b = temp_memory_b + idx * h_dim;
// int pattern_id = idx;
int pattern_id = idx / dim_xy;
int position_xy = idx - (pattern_id * dim_xy);
// size_t position_x = blockIdx.y;
// size_t position_y = blockIdx.z;
size_t position_x = position_xy / dim_y;
size_t position_y = position_xy - (position_x * dim_y);
epsilon_xy_ptr = epsilon_xy_pointer +
position_x * epsilon_xy_dim_c1 + position_y;
h_ptr = h_pointer +
pattern_id * h_dim_c0 + position_x * h_dim_c2 + position_y;
input_ptr = input_pointer +
pattern_id * input_dim_c0 + position_x * input_dim_c2 + position_y;
gpu_update_one_ip(
h_init_ptr,
h_ptr,
h_dim_c1,
h_dim,
weights_pointer,
weights_dim_c0,
input_ptr,
input_dim_c1,
epsilon_xy_ptr,
epsilon_xy_dim_c0,
epsilon_t_pointer,
number_of_spikes,
forgetting_offset,
forgetting_offset_local,
temp_memory_ptr_a,
temp_memory_ptr_b
);
}
};
// Let's face it... We need a better way to paralelize it...
bool HDynamicCNNManyIP::gpu_update(
float* h_init_ptr,
float* h_pointer,
size_t h_dim_c0,
size_t h_dim_c1,
size_t h_dim_c2,
size_t h_dim,
float* epsilon_xy_pointer,
size_t epsilon_xy_dim_c0,
size_t epsilon_xy_dim_c1,
float* epsilon_t_pointer,
float* weights_pointer,
size_t weights_dim_c0,
int64_t* input_pointer,
size_t input_dim_c0,
size_t input_dim_c1,
size_t input_dim_c2,
size_t number_of_spikes,
size_t dim_x,
size_t dim_y,
float forgetting_offset,
float forgetting_offset_local,
size_t number_of_pattern,
size_t gpu_tuning_factor)
{
cudaError_t status;
assert((dim_x < 65535));
assert((dim_y < 65535));
// // //////////////////////////////////////
// // Get infos about the device
// // //////////////////////////////////////
// int device;
// cudaDeviceProp prop;
// status = cudaGetDevice(&device);
// assert((status == cudaSuccess));
// // std::cout << "Device ID: " << device << std::endl;
// status = cudaGetDeviceProperties(&prop, device);
// assert((status == cudaSuccess));
// // std::cout << "Device name: " << prop.name << std::endl;
// int _cuda_heap_size_in_mb = 16;
// status = cudaDeviceSetLimit(cudaLimitMallocHeapSize, _cuda_heap_size_in_mb * (1 << 20));
// assert((status == cudaSuccess));
// size_t pValue;
// cudaDeviceGetLimit(&pValue, cudaLimitMallocHeapSize);
// std::cout << pValue << " " << (pValue/(2*4*h_dim)) << std::endl;
// exit(1);
// //////////////////////////////////////
// Calculate the distribution on the GPU
// //////////////////////////////////////
int min_grid_size;
int block_size;
int grid_size;
size_t dynamic_s_mem_size = 0;
size_t max_threadable_tasks = number_of_pattern * dim_x * dim_y;
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html?highlight=blocksize#occupancy-calculator
status = cudaOccupancyMaxPotentialBlockSize(&min_grid_size, &block_size,
(void*)kernel_spike_generation,
dynamic_s_mem_size, max_threadable_tasks);
assert((status == cudaSuccess));
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
// Maximum dimensionality of grid of thread blocks: 3
// Maximum x -dimension of a grid of thread blocks: (2^31)-1
// Maximum y- or z-dimension of a grid of thread blocks: 65535
// Reduce the automatic block size with our guess
if ((gpu_tuning_factor > 0) && (gpu_tuning_factor < block_size))
{
block_size = int(gpu_tuning_factor);
}
// Round up according to array size
// (I will separate x and y into other grid dimentsions soon)
// grid_size = (number_of_pattern + block_size - 1) / block_size;
grid_size = (max_threadable_tasks + block_size - 1) / block_size;
// std::cout << min_grid_size << std::endl;
// std::cout << grid_size << std::endl;
// std::cout << block_size << std::endl;
// std::cout << max_threadable_tasks << std::endl;
//dim3 grid(grid_size, dim_x, dim_y);
float* temp_memory_a = nullptr;
status = cudaMalloc((void**)&temp_memory_a, h_dim * max_threadable_tasks * sizeof(float));
assert((status == cudaSuccess));
float* temp_memory_b = nullptr;
status = cudaMalloc((void**)&temp_memory_b, h_dim * max_threadable_tasks * sizeof(float));
assert((status == cudaSuccess));
//kernel_spike_generation<<<grid, block_size >>>(
kernel_spike_generation<<<grid_size, block_size >>>(
h_init_ptr,
h_pointer,
h_dim_c0,
h_dim_c1,
h_dim_c2,
h_dim,
weights_pointer,
weights_dim_c0,
input_pointer,
input_dim_c0,
input_dim_c1,
input_dim_c2,
epsilon_xy_pointer,
epsilon_xy_dim_c0,
epsilon_xy_dim_c1,
epsilon_t_pointer,
number_of_spikes,
forgetting_offset,
forgetting_offset_local,
dim_x,
dim_y,
(dim_x * dim_y),
//number_of_pattern
max_threadable_tasks,
temp_memory_a,
temp_memory_b
);
status = cudaDeviceSynchronize();
assert((status == cudaSuccess));
status = cudaFree(temp_memory_a);
assert((status == cudaSuccess));
status = cudaFree(temp_memory_b);
assert((status == cudaSuccess));
return true;
};