87 lines
2.1 KiB
Python
87 lines
2.1 KiB
Python
import torch
|
|
|
|
|
|
def calculate_output_size(
|
|
value: list[int],
|
|
kernel_size: list[int],
|
|
stride: list[int],
|
|
dilation: list[int],
|
|
padding: list[int],
|
|
) -> torch.Tensor:
|
|
assert len(value) == 2
|
|
assert len(kernel_size) == 2
|
|
assert len(stride) == 2
|
|
assert len(dilation) == 2
|
|
assert len(padding) == 2
|
|
|
|
coordinates_0, coordinates_1 = get_coordinates(
|
|
value=value,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
)
|
|
|
|
output_size: torch.Tensor = torch.tensor(
|
|
[
|
|
coordinates_0.shape[1],
|
|
coordinates_1.shape[1],
|
|
],
|
|
dtype=torch.int64,
|
|
)
|
|
return output_size
|
|
|
|
|
|
def get_coordinates(
|
|
value: list[int],
|
|
kernel_size: list[int],
|
|
stride: list[int],
|
|
dilation: list[int],
|
|
padding: list[int],
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
"""Function converts parameter in coordinates
|
|
for the convolution window"""
|
|
|
|
coordinates_0: torch.Tensor = (
|
|
torch.nn.functional.unfold(
|
|
torch.arange(0, int(value[0]), dtype=torch.float32)
|
|
.unsqueeze(1)
|
|
.unsqueeze(0)
|
|
.unsqueeze(0),
|
|
kernel_size=(int(kernel_size[0]), 1),
|
|
dilation=int(dilation[0]),
|
|
padding=(int(padding[0]), 0),
|
|
stride=int(stride[0]),
|
|
)
|
|
.squeeze(0)
|
|
.type(torch.int64)
|
|
)
|
|
|
|
coordinates_1: torch.Tensor = (
|
|
torch.nn.functional.unfold(
|
|
torch.arange(0, int(value[1]), dtype=torch.float32)
|
|
.unsqueeze(0)
|
|
.unsqueeze(0)
|
|
.unsqueeze(0),
|
|
kernel_size=(1, int(kernel_size[1])),
|
|
dilation=int(dilation[1]),
|
|
padding=(0, int(padding[1])),
|
|
stride=int(stride[1]),
|
|
)
|
|
.squeeze(0)
|
|
.type(torch.int64)
|
|
)
|
|
|
|
return coordinates_0, coordinates_1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
a, b = get_coordinates(
|
|
value=[28, 28],
|
|
kernel_size=[5, 5],
|
|
stride=[1, 1],
|
|
dilation=[1, 1],
|
|
padding=[0, 0],
|
|
)
|
|
print(a.shape)
|
|
print(b.shape)
|