pytorch-sbs/network/HDynamicLayer.py
2023-02-04 14:24:47 +01:00

451 lines
15 KiB
Python

import torch
from network.PyHDynamicCNNCPU import HDynamicCNNCPU
from network.PyHDynamicCNNGPU import HDynamicCNNGPU
global_sbs_gpu_setting: list[torch.Tensor] = []
global_sbs_size: list[torch.Tensor] = []
global_sbs_hdynamic_cpp: list[HDynamicCNNCPU | HDynamicCNNGPU] = []
class HDynamicLayer(torch.nn.Module):
_sbs_gpu_setting_position: int
_sbs_hdynamic_cpp_position: int
_gpu_tuning_factor: int
_number_of_cpu_processes: int
_output_size: list[int]
_w_trainable: bool
_output_layer: bool
_local_learning: bool
device: torch.device
default_dtype: torch.dtype
def __init__(
self,
output_size: list[int],
output_layer: bool = False,
local_learning: bool = False,
number_of_cpu_processes: int = 1,
w_trainable: bool = False,
skip_gradient_calculation: bool = False,
device: torch.device | None = None,
default_dtype: torch.dtype | None = None,
gpu_tuning_factor: int = 5,
) -> None:
super().__init__()
assert device is not None
self.device = device
self.default_dtype = default_dtype
self._gpu_tuning_factor = int(gpu_tuning_factor)
self._number_of_cpu_processes = int(number_of_cpu_processes)
self._w_trainable = bool(w_trainable)
self._skip_gradient_calculation = bool(skip_gradient_calculation)
self._output_size = output_size
self._output_layer = bool(output_layer)
self._local_learning = bool(local_learning)
global_sbs_gpu_setting.append(torch.tensor([0]))
global_sbs_size.append(torch.tensor([0, 0, 0, 0]))
if device == torch.device("cpu"):
global_sbs_hdynamic_cpp.append(HDynamicCNNCPU())
else:
global_sbs_hdynamic_cpp.append(HDynamicCNNGPU())
self._sbs_gpu_setting_position = len(global_sbs_gpu_setting) - 1
self._sbs_hdynamic_cpp_position = len(global_sbs_hdynamic_cpp) - 1
self.functional_sbs = FunctionalSbS.apply
####################################################################
# Forward #
####################################################################
def forward(
self,
input: torch.Tensor,
spike: torch.Tensor,
epsilon_xy: torch.Tensor,
epsilon_t_0: torch.Tensor,
weights: torch.Tensor,
h_initial: torch.Tensor,
last_grad_scale: torch.Tensor,
labels: torch.Tensor | None = None,
keep_last_grad_scale: bool = False,
disable_scale_grade: bool = True,
forgetting_offset: float = -1.0,
) -> torch.Tensor:
if labels is None:
labels_copy: torch.Tensor = torch.tensor(
[], dtype=torch.int64, device=self.device
)
else:
labels_copy = (
labels.detach().clone().type(dtype=torch.int64).to(device=self.device)
)
if (spike.shape[-2] * spike.shape[-1]) > self._gpu_tuning_factor:
gpu_tuning_factor = self._gpu_tuning_factor
else:
gpu_tuning_factor = 0
parameter_list = torch.tensor(
[
int(self._number_of_cpu_processes), # 0
int(self._output_size[0]), # 1
int(self._output_size[1]), # 2
int(gpu_tuning_factor), # 3
int(self._sbs_gpu_setting_position), # 4
int(self._sbs_hdynamic_cpp_position), # 5
int(self._w_trainable), # 6
int(disable_scale_grade), # 7
int(keep_last_grad_scale), # 8
int(self._skip_gradient_calculation), # 9
int(self._output_layer), # 10
int(self._local_learning), # 11
],
dtype=torch.int64,
)
# SbS forward functional
return self.functional_sbs(
input,
spike,
epsilon_xy,
epsilon_t_0,
weights,
h_initial,
parameter_list,
last_grad_scale,
torch.tensor(
forgetting_offset, device=self.device, dtype=self.default_dtype
),
labels_copy,
)
class FunctionalSbS(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx,
input: torch.Tensor,
spikes: torch.Tensor,
epsilon_xy: torch.Tensor | None,
epsilon_t_0: torch.Tensor,
weights: torch.Tensor,
h_initial: torch.Tensor,
parameter_list: torch.Tensor,
grad_output_scale: torch.Tensor,
forgetting_offset: torch.Tensor,
labels: torch.Tensor,
) -> torch.Tensor:
number_of_spikes: int = int(spikes.shape[1])
if input.device == torch.device("cpu"):
hdyn_number_of_cpu_processes: int = int(parameter_list[0])
else:
hdyn_number_of_cpu_processes = -1
output_size_0: int = int(parameter_list[1])
output_size_1: int = int(parameter_list[2])
gpu_tuning_factor: int = int(parameter_list[3])
sbs_gpu_setting_position = int(parameter_list[4])
sbs_hdynamic_cpp_position = int(parameter_list[5])
# ###########################################################
# H dynamic
# ###########################################################
assert epsilon_t_0.ndim == 1
assert epsilon_t_0.shape[0] >= number_of_spikes
# ############################################
# Make space for the results
# ############################################
output = torch.empty(
(
int(input.shape[0]),
int(weights.shape[1]),
output_size_0,
output_size_1,
),
dtype=input.dtype,
device=input.device,
)
assert output.is_contiguous() is True
if epsilon_xy is not None:
assert epsilon_xy.is_contiguous() is True
assert epsilon_xy.ndim == 3
assert epsilon_t_0.is_contiguous() is True
assert weights.is_contiguous() is True
assert spikes.is_contiguous() is True
assert h_initial.is_contiguous() is True
assert weights.ndim == 2
assert h_initial.ndim == 1
sbs_profile = global_sbs_gpu_setting[sbs_gpu_setting_position].clone()
sbs_size = global_sbs_size[sbs_gpu_setting_position].clone()
if input.device != torch.device("cpu"):
if (
(sbs_profile.numel() == 1)
or (sbs_size[0] != int(output.shape[0]))
or (sbs_size[1] != int(output.shape[1]))
or (sbs_size[2] != int(output.shape[2]))
or (sbs_size[3] != int(output.shape[3]))
):
sbs_profile = torch.zeros(
(14, 7), dtype=torch.int64, device=torch.device("cpu")
)
global_sbs_hdynamic_cpp[sbs_hdynamic_cpp_position].gpu_occupancy_export(
int(output.shape[2]),
int(output.shape[3]),
int(output.shape[0]),
int(output.shape[1]),
sbs_profile.data_ptr(),
int(sbs_profile.shape[0]),
int(sbs_profile.shape[1]),
)
global_sbs_gpu_setting[sbs_gpu_setting_position] = sbs_profile.clone()
sbs_size[0] = int(output.shape[0])
sbs_size[1] = int(output.shape[1])
sbs_size[2] = int(output.shape[2])
sbs_size[3] = int(output.shape[3])
global_sbs_size[sbs_gpu_setting_position] = sbs_size.clone()
else:
global_sbs_hdynamic_cpp[sbs_hdynamic_cpp_position].gpu_occupancy_import(
sbs_profile.data_ptr(),
int(sbs_profile.shape[0]),
int(sbs_profile.shape[1]),
)
global_sbs_hdynamic_cpp[sbs_hdynamic_cpp_position].update(
output.data_ptr(),
int(output.shape[0]),
int(output.shape[1]),
int(output.shape[2]),
int(output.shape[3]),
epsilon_xy.data_ptr() if epsilon_xy is not None else int(0),
int(epsilon_xy.shape[0]) if epsilon_xy is not None else int(0),
int(epsilon_xy.shape[1]) if epsilon_xy is not None else int(0),
int(epsilon_xy.shape[2]) if epsilon_xy is not None else int(0),
epsilon_t_0.data_ptr(),
int(epsilon_t_0.shape[0]),
weights.data_ptr(),
int(weights.shape[0]),
int(weights.shape[1]),
spikes.data_ptr(),
int(spikes.shape[0]),
int(spikes.shape[1]),
int(spikes.shape[2]),
int(spikes.shape[3]),
h_initial.data_ptr(),
int(h_initial.shape[0]),
hdyn_number_of_cpu_processes,
float(forgetting_offset.cpu().item()),
int(gpu_tuning_factor),
)
# ###########################################################
# Save the necessary data for the backward pass
# ###########################################################
ctx.save_for_backward(
input,
weights,
output,
parameter_list,
grad_output_scale,
labels,
)
return output
@staticmethod
def backward(ctx, grad_output):
# ##############################################
# Get the variables back
# ##############################################
(
input,
weights,
output,
parameter_list,
last_grad_scale,
labels,
) = ctx.saved_tensors
assert labels.numel() > 0
# ##############################################
# Default output
# ##############################################
grad_input = None
grad_spikes = None
grad_eps_xy = None
grad_epsilon_t_0 = None
grad_weights = None
grad_h_initial = None
grad_parameter_list = None
grad_forgetting_offset = None
grad_labels = None
# ##############################################
# Parameters
# ##############################################
parameter_w_trainable: bool = bool(parameter_list[6])
parameter_disable_scale_grade: bool = bool(parameter_list[7])
parameter_keep_last_grad_scale: bool = bool(parameter_list[8])
parameter_skip_gradient_calculation: bool = bool(parameter_list[9])
parameter_output_layer: bool = bool(parameter_list[10])
parameter_local_learning: bool = bool(parameter_list[11])
# ##############################################
# Dealing with overall scale of the gradient
# ##############################################
if parameter_disable_scale_grade is False:
if parameter_keep_last_grad_scale is True:
last_grad_scale = torch.tensor(
[torch.abs(grad_output).max(), last_grad_scale]
).max()
grad_output /= last_grad_scale
grad_output_scale = last_grad_scale.clone()
input /= input.sum(dim=1, keepdim=True, dtype=weights.dtype)
# #################################################
# User doesn't want us to calculate the gradients
# #################################################
if parameter_skip_gradient_calculation is True:
return (
grad_input,
grad_spikes,
grad_eps_xy,
grad_epsilon_t_0,
grad_weights,
grad_h_initial,
grad_parameter_list,
grad_output_scale,
grad_forgetting_offset,
grad_labels,
)
# #################################################
# Calculate backprop error (grad_input)
# #################################################
backprop_r: torch.Tensor = weights.unsqueeze(0).unsqueeze(-1).unsqueeze(
-1
) * output.unsqueeze(1)
backprop_bigr: torch.Tensor = backprop_r.sum(dim=2)
backprop_z: torch.Tensor = backprop_r * (
1.0 / (backprop_bigr + 1e-20)
).unsqueeze(2)
grad_input: torch.Tensor = (backprop_z * grad_output.unsqueeze(1)).sum(2)
del backprop_z
# #################################################
# Calculate weight gradient (grad_weights)
# #################################################
if parameter_w_trainable is False:
# #################################################
# We don't train this weight
# #################################################
grad_weights = None
elif (parameter_output_layer is False) and (parameter_local_learning is True):
# #################################################
# Local learning
# #################################################
grad_weights = (
(-2 * (input - backprop_bigr).unsqueeze(2) * output.unsqueeze(1))
.sum(0)
.sum(-1)
.sum(-1)
)
elif (parameter_output_layer is True) and (parameter_local_learning is True):
target_one_hot: torch.Tensor = torch.zeros(
(
labels.shape[0],
output.shape[1],
),
device=input.device,
dtype=input.dtype,
)
target_one_hot.scatter_(
1,
labels.to(input.device).unsqueeze(1),
torch.ones(
(labels.shape[0], 1),
device=input.device,
dtype=input.dtype,
),
)
target_one_hot = target_one_hot.unsqueeze(-1).unsqueeze(-1)
# (-2 * (input - backprop_bigr).unsqueeze(2) * (target_one_hot-output).unsqueeze(1))
# (-2 * input.unsqueeze(2) * (target_one_hot-output).unsqueeze(1))
grad_weights = (
(
-2
* (input - backprop_bigr).unsqueeze(2)
* target_one_hot.unsqueeze(1)
)
.sum(0)
.sum(-1)
.sum(-1)
)
else:
# #################################################
# Backprop
# #################################################
backprop_f: torch.Tensor = output.unsqueeze(1) * (
input / (backprop_bigr**2 + 1e-20)
).unsqueeze(2)
result_omega: torch.Tensor = backprop_bigr.unsqueeze(
2
) * grad_output.unsqueeze(1)
result_omega -= (backprop_r * grad_output.unsqueeze(1)).sum(2).unsqueeze(2)
result_omega *= backprop_f
del backprop_f
grad_weights = result_omega.sum(0).sum(-1).sum(-1)
del result_omega
del backprop_bigr
del backprop_r
return (
grad_input,
grad_spikes,
grad_eps_xy,
grad_epsilon_t_0,
grad_weights,
grad_h_initial,
grad_parameter_list,
grad_output_scale,
grad_forgetting_offset,
grad_labels,
)