pytorch-sbs/network/SbSLayer.py
2023-02-06 09:55:30 +01:00

489 lines
17 KiB
Python

import torch
from network.SpikeLayer import SpikeLayer
from network.HDynamicLayer import HDynamicLayer
from network.calculate_output_size import calculate_output_size
from network.SortSpikesLayer import SortSpikesLayer
class SbSLayer(torch.nn.Module):
_epsilon_xy: torch.Tensor | None = None
_epsilon_xy_use: bool
_epsilon_0: float
_weights: torch.nn.parameter.Parameter
_weights_exists: bool = False
_kernel_size: list[int]
_stride: list[int]
_dilation: list[int]
_padding: list[int]
_output_size: torch.Tensor
_number_of_spikes: int
_number_of_cpu_processes: int
_number_of_neurons: int
_number_of_input_neurons: int
_epsilon_xy_intitial: float
_h_initial: torch.Tensor | None = None
_w_trainable: bool
_last_grad_scale: torch.nn.parameter.Parameter
_keep_last_grad_scale: bool
_disable_scale_grade: bool
_forgetting_offset: float
_weight_noise_range: list[float]
_skip_gradient_calculation: bool
_is_pooling_layer: bool
_input_size: list[int]
_output_layer: bool = False
_local_learning: bool = False
device: torch.device
default_dtype: torch.dtype
_gpu_tuning_factor: int
_max_grad_weights: torch.Tensor | None = None
_number_of_grad_weight_contributions: float = 0.0
last_input_store: bool = False
last_input_data: torch.Tensor | None = None
_cooldown_after_number_of_spikes: int = -1
_reduction_cooldown: float = 1.0
_layer_id: int = -1
_spike_full_layer_input_distribution: bool
_force_forward_h_dynamic_on_cpu: bool
def __init__(
self,
number_of_input_neurons: int,
number_of_neurons: int,
input_size: list[int],
forward_kernel_size: list[int],
number_of_spikes: int,
epsilon_xy_intitial: float = 0.1,
epsilon_xy_use: bool = False,
epsilon_0: float = 1.0,
weight_noise_range: list[float] = [0.0, 1.0],
is_pooling_layer: bool = False,
strides: list[int] = [1, 1],
dilation: list[int] = [0, 0],
padding: list[int] = [0, 0],
number_of_cpu_processes: int = 1,
w_trainable: bool = False,
keep_last_grad_scale: bool = False,
disable_scale_grade: bool = True,
forgetting_offset: float = -1.0,
skip_gradient_calculation: bool = False,
device: torch.device | None = None,
default_dtype: torch.dtype | None = None,
gpu_tuning_factor: int = 10,
layer_id: int = -1,
cooldown_after_number_of_spikes: int = -1,
reduction_cooldown: float = 1.0,
force_forward_h_dynamic_on_cpu: bool = True,
spike_full_layer_input_distribution: bool = False,
force_forward_spike_on_cpu: bool = False,
force_forward_spike_output_on_cpu: bool = False,
) -> None:
super().__init__()
assert device is not None
assert default_dtype is not None
self.device = device
self.default_dtype = default_dtype
self._w_trainable = bool(w_trainable)
self._keep_last_grad_scale = bool(keep_last_grad_scale)
self._skip_gradient_calculation = bool(skip_gradient_calculation)
self._disable_scale_grade = bool(disable_scale_grade)
self._epsilon_xy_intitial = float(epsilon_xy_intitial)
self._stride = strides
self._dilation = dilation
self._padding = padding
self._kernel_size = forward_kernel_size
self._number_of_input_neurons = int(number_of_input_neurons)
self._number_of_neurons = int(number_of_neurons)
self._epsilon_0 = float(epsilon_0)
self._number_of_cpu_processes = int(number_of_cpu_processes)
self._number_of_spikes = int(number_of_spikes)
self._weight_noise_range = weight_noise_range
self._is_pooling_layer = bool(is_pooling_layer)
self._cooldown_after_number_of_spikes = int(cooldown_after_number_of_spikes)
self.reduction_cooldown = float(reduction_cooldown)
self._layer_id = layer_id
self._epsilon_xy_use = epsilon_xy_use
self._force_forward_h_dynamic_on_cpu = force_forward_h_dynamic_on_cpu
self._spike_full_layer_input_distribution = spike_full_layer_input_distribution
assert len(input_size) == 2
self._input_size = input_size
# The GPU hates me...
# Too many SbS threads == bad
# Thus I need to limit them...
# (Reminder: We cannot access the mini-batch size here,
# which is part of the GPU thread size calculation...)
self._last_grad_scale = torch.nn.parameter.Parameter(
torch.tensor(-1.0, dtype=self.default_dtype),
requires_grad=True,
)
self._forgetting_offset = float(forgetting_offset)
self._output_size = calculate_output_size(
value=input_size,
kernel_size=self._kernel_size,
stride=self._stride,
dilation=self._dilation,
padding=self._padding,
)
self.set_h_init_to_uniform()
self.spike_generator = SpikeLayer(
number_of_spikes=self._number_of_spikes,
number_of_cpu_processes=self._number_of_cpu_processes,
device=self.device,
force_forward_spike_on_cpu=force_forward_spike_on_cpu,
force_forward_spike_output_on_cpu=force_forward_spike_output_on_cpu,
)
self.h_dynamic = HDynamicLayer(
output_size=self._output_size.tolist(),
output_layer=self._output_layer,
local_learning=self._local_learning,
number_of_cpu_processes=number_of_cpu_processes,
w_trainable=w_trainable,
skip_gradient_calculation=skip_gradient_calculation,
device=device,
default_dtype=self.default_dtype,
gpu_tuning_factor=gpu_tuning_factor,
force_forward_h_dynamic_on_cpu=self._force_forward_h_dynamic_on_cpu,
)
assert len(input_size) >= 2
self.spikes_sorter = SortSpikesLayer(
kernel_size=self._kernel_size,
input_shape=[
self._number_of_input_neurons,
int(input_size[0]),
int(input_size[1]),
],
output_size=self._output_size.clone(),
strides=self._stride,
dilation=self._dilation,
padding=self._padding,
number_of_cpu_processes=number_of_cpu_processes,
)
# ###############################################################
# Initialize the weights
# ###############################################################
if self._is_pooling_layer is True:
self.weights = self._make_pooling_weights()
else:
assert len(self._weight_noise_range) == 2
weights = torch.empty(
(
int(self._kernel_size[0])
* int(self._kernel_size[1])
* int(self._number_of_input_neurons),
int(self._number_of_neurons),
),
dtype=self.default_dtype,
device=self.device,
)
torch.nn.init.uniform_(
weights,
a=float(self._weight_noise_range[0]),
b=float(self._weight_noise_range[1]),
)
self.weights = weights
####################################################################
# Variables in and out #
####################################################################
def get_epsilon_t(self, number_of_spikes: int):
"""Generates the time series of the basic epsilon."""
t = (
torch.arange(
0, number_of_spikes, dtype=self.default_dtype, device=self.device
)
+ 1
)
# torch.ones((number_of_spikes), dtype=self.default_dtype, device=self.device
epsilon_t: torch.Tensor = t ** (-1.0 / 2.0)
if (self._cooldown_after_number_of_spikes < number_of_spikes) and (
self._cooldown_after_number_of_spikes >= 0
):
epsilon_t[
self._cooldown_after_number_of_spikes : number_of_spikes
] /= self._reduction_cooldown
return epsilon_t
@property
def weights(self) -> torch.Tensor | None:
if self._weights_exists is False:
return None
else:
return self._weights
@weights.setter
def weights(self, value: torch.Tensor):
assert value is not None
assert torch.is_tensor(value) is True
assert value.dim() == 2
temp: torch.Tensor = (
value.detach()
.clone(memory_format=torch.contiguous_format)
.type(dtype=self.default_dtype)
.to(device=self.device)
)
temp /= temp.sum(dim=0, keepdim=True, dtype=self.default_dtype)
if self._weights_exists is False:
self._weights = torch.nn.parameter.Parameter(temp, requires_grad=True)
self._weights_exists = True
else:
self._weights.data = temp
@property
def h_initial(self) -> torch.Tensor | None:
return self._h_initial
@h_initial.setter
def h_initial(self, value: torch.Tensor):
assert value is not None
assert torch.is_tensor(value) is True
assert value.dim() == 1
assert value.dtype == self.default_dtype
self._h_initial = (
value.detach()
.clone(memory_format=torch.contiguous_format)
.type(dtype=self.default_dtype)
.to(device=self.device)
.requires_grad_(False)
)
def update_pre_care(self):
if self._weights.grad is not None:
assert self._number_of_grad_weight_contributions > 0
self._weights.grad /= self._number_of_grad_weight_contributions
self._number_of_grad_weight_contributions = 0.0
def update_after_care(self, threshold_weight: float):
if self._w_trainable is True:
self.norm_weights()
self.threshold_weights(threshold_weight)
self.norm_weights()
def after_batch(self, new_state: bool = False):
if self._keep_last_grad_scale is True:
self._last_grad_scale.data = self._last_grad_scale.grad
self._keep_last_grad_scale = new_state
self._last_grad_scale.grad = torch.zeros_like(self._last_grad_scale.grad)
####################################################################
# Helper functions #
####################################################################
def _make_pooling_weights(self) -> torch.Tensor:
"""For generating the pooling weights."""
assert self._number_of_neurons is not None
assert self._kernel_size is not None
weights: torch.Tensor = torch.zeros(
(
int(self._kernel_size[0]),
int(self._kernel_size[1]),
int(self._number_of_neurons),
int(self._number_of_neurons),
),
dtype=self.default_dtype,
device=self.device,
)
for i in range(0, int(self._number_of_neurons)):
weights[:, :, i, i] = 1.0
weights = weights.moveaxis(-1, 0).moveaxis(-1, 1)
weights = torch.nn.functional.unfold(
input=weights,
kernel_size=(int(self._kernel_size[0]), int(self._kernel_size[1])),
dilation=(1, 1),
padding=(0, 0),
stride=(1, 1),
).squeeze()
weights = torch.moveaxis(weights, 0, 1)
return weights
def set_h_init_to_uniform(self) -> None:
assert self._number_of_neurons > 2
self.h_initial: torch.Tensor = torch.full(
(self._number_of_neurons,),
(1.0 / float(self._number_of_neurons)),
dtype=self.default_dtype,
device=self.device,
)
def norm_weights(self) -> None:
assert self._weights_exists is True
temp: torch.Tensor = (
self._weights.data.detach()
.clone(memory_format=torch.contiguous_format)
.type(dtype=self.default_dtype)
.to(device=self.device)
)
temp /= temp.sum(dim=0, keepdim=True, dtype=self.default_dtype)
self._weights.data = temp
def threshold_weights(self, threshold: float) -> None:
assert self._weights_exists is True
assert threshold >= 0
torch.clamp(
self._weights.data,
min=float(threshold),
max=None,
out=self._weights.data,
)
####################################################################
# Forward #
####################################################################
def forward(
self,
input: torch.Tensor,
labels: torch.Tensor | None = None,
) -> torch.Tensor:
# Are we happy with the input?
assert input is not None
assert torch.is_tensor(input) is True
assert input.dim() == 4
assert input.dtype == self.default_dtype
assert input.shape[1] == self._number_of_input_neurons
assert input.shape[2] == self._input_size[0]
assert input.shape[3] == self._input_size[1]
# Are we happy with the rest of the network?
assert self._epsilon_0 is not None
assert self._h_initial is not None
assert self._forgetting_offset is not None
assert self._weights_exists is True
assert self._weights is not None
# Convolution of the input...
# Well, this is a convoltion layer
# there needs to be convolution somewhere
input_convolved = torch.nn.functional.fold(
torch.nn.functional.unfold(
input.requires_grad_(True),
kernel_size=(int(self._kernel_size[0]), int(self._kernel_size[1])),
dilation=(int(self._dilation[0]), int(self._dilation[1])),
padding=(int(self._padding[0]), int(self._padding[1])),
stride=(int(self._stride[0]), int(self._stride[1])),
),
output_size=tuple(self._output_size.tolist()),
kernel_size=(1, 1),
dilation=(1, 1),
padding=(0, 0),
stride=(1, 1),
)
# We might need the convolved input for other layers
# let us keep it for the future
if self.last_input_store is True:
self.last_input_data = input_convolved.detach().clone()
self.last_input_data /= self.last_input_data.sum(dim=1, keepdim=True)
else:
self.last_input_data = None
epsilon_t_0: torch.Tensor = (
(self.get_epsilon_t(self._number_of_spikes) * self._epsilon_0)
.type(input.dtype)
.to(input.device)
)
if (self._epsilon_xy is None) and (self._epsilon_xy_use is True):
self._epsilon_xy = torch.full(
(
input_convolved.shape[1],
input_convolved.shape[2],
input_convolved.shape[3],
),
float(self._epsilon_xy_intitial),
dtype=self.default_dtype,
device=self.device,
)
if self._epsilon_xy_use is True:
assert self._epsilon_xy is not None
# In the case somebody tried to replace the matrix with wrong dimensions
assert self._epsilon_xy.shape[0] == input_convolved.shape[1]
assert self._epsilon_xy.shape[1] == input_convolved.shape[2]
assert self._epsilon_xy.shape[2] == input_convolved.shape[3]
else:
assert self._epsilon_xy is None
if self._spike_full_layer_input_distribution is False:
spike = self.spike_generator(input_convolved, int(self._number_of_spikes))
else:
input_shape = input.shape
input = (
input.reshape(
(input_shape[0], input_shape[1] * input_shape[2] * input_shape[3])
)
.unsqueeze(-1)
.unsqueeze(-1)
)
spike_unsorted = self.spike_generator(input, int(self._number_of_spikes))
input = (
input.squeeze(-1)
.squeeze(-1)
.reshape(
(input_shape[0], input_shape[1], input_shape[2], input_shape[3])
)
)
spike = self.spikes_sorter(spike_unsorted)
if self._force_forward_h_dynamic_on_cpu is False:
spike = spike.to(device=input_convolved.device)
output = self.h_dynamic(
input=input_convolved,
spike=spike,
epsilon_xy=self._epsilon_xy,
epsilon_t_0=epsilon_t_0,
weights=self._weights,
h_initial=self._h_initial,
last_grad_scale=self._last_grad_scale,
labels=labels,
keep_last_grad_scale=self._keep_last_grad_scale,
disable_scale_grade=self._disable_scale_grade,
forgetting_offset=self._forgetting_offset,
)
self._number_of_grad_weight_contributions += (
output.shape[0] * output.shape[-2] * output.shape[-1]
)
return output