487 lines
19 KiB
Python
487 lines
19 KiB
Python
# %%
|
|
import torch
|
|
|
|
from network.calculate_output_size import calculate_output_size
|
|
from network.Parameter import Config
|
|
from network.SbSLayer import SbSLayer
|
|
from network.NNMFLayer import NNMFLayer
|
|
from network.SplitOnOffLayer import SplitOnOffLayer
|
|
from network.Conv2dApproximation import Conv2dApproximation
|
|
from network.SbSReconstruction import SbSReconstruction
|
|
from network.InputSpikeImage import InputSpikeImage
|
|
|
|
|
|
def build_network(
|
|
cfg: Config, device: torch.device, default_dtype: torch.dtype, logging
|
|
) -> torch.nn.Sequential:
|
|
network = torch.nn.Sequential()
|
|
input_size: list[list[int]] = []
|
|
input_size.append(cfg.image_statistics.the_size)
|
|
|
|
for layer_id in range(0, len(cfg.network_structure.layer_type)):
|
|
# #############################################################
|
|
# Show infos about the layer:
|
|
# #############################################################
|
|
logging.info("")
|
|
logging.info(f"Layer ID: {layer_id}")
|
|
logging.info(f"Layer type: {cfg.network_structure.layer_type[layer_id]}")
|
|
|
|
# #############################################################
|
|
# Fill in the default values
|
|
# #############################################################
|
|
|
|
kernel_size: list[int] = [1, 1]
|
|
if len(cfg.network_structure.forward_kernel_size) > layer_id:
|
|
kernel_size = cfg.network_structure.forward_kernel_size[layer_id]
|
|
|
|
padding: list[int] = [0, 0]
|
|
if len(cfg.network_structure.padding) > layer_id:
|
|
padding = cfg.network_structure.padding[layer_id]
|
|
|
|
dilation: list[int] = [1, 1]
|
|
if len(cfg.network_structure.dilation) > layer_id:
|
|
dilation = cfg.network_structure.dilation[layer_id]
|
|
|
|
strides: list[int] = [1, 1]
|
|
if len(cfg.network_structure.strides) > layer_id:
|
|
if len(cfg.network_structure.strides[layer_id]) == 2:
|
|
strides = cfg.network_structure.strides[layer_id]
|
|
|
|
in_channels: int = -1
|
|
out_channels: int = -1
|
|
if len(cfg.network_structure.forward_neuron_numbers) > layer_id:
|
|
if len(cfg.network_structure.forward_neuron_numbers[layer_id]) == 2:
|
|
in_channels = cfg.network_structure.forward_neuron_numbers[layer_id][0]
|
|
out_channels = cfg.network_structure.forward_neuron_numbers[layer_id][1]
|
|
|
|
weight_noise_range: list[float] = [1.0, 1.1]
|
|
if len(cfg.learning_parameters.weight_noise_range) == 2:
|
|
weight_noise_range = [
|
|
float(cfg.learning_parameters.weight_noise_range[0]),
|
|
float(cfg.learning_parameters.weight_noise_range[1]),
|
|
]
|
|
|
|
logging.info(f"Input channels: {in_channels}")
|
|
logging.info(f"Output channels: {out_channels}")
|
|
logging.info(f"Kernel size: {kernel_size}")
|
|
logging.info(f"Stride: {strides}")
|
|
logging.info(f"Dilation: {dilation}")
|
|
logging.info(f"Padding: {padding}")
|
|
|
|
# Conv2D
|
|
bias: bool = True
|
|
|
|
# Approx settings
|
|
approximation_enable: bool = False
|
|
if len(cfg.approximation_setting.approximation_enable) > layer_id:
|
|
approximation_enable = cfg.approximation_setting.approximation_enable[
|
|
layer_id
|
|
]
|
|
logging.info(f"Approximation Enable: {approximation_enable}")
|
|
elif len(cfg.approximation_setting.approximation_enable) == 1:
|
|
approximation_enable = cfg.approximation_setting.approximation_enable[0]
|
|
logging.info(f"Approximation Enable: {approximation_enable}")
|
|
|
|
number_of_trunc_bits: int = -1
|
|
if len(cfg.approximation_setting.number_of_trunc_bits) > layer_id:
|
|
number_of_trunc_bits = cfg.approximation_setting.number_of_trunc_bits[
|
|
layer_id
|
|
]
|
|
logging.info(f"Number of trunc bits: {number_of_trunc_bits}")
|
|
elif len(cfg.approximation_setting.number_of_trunc_bits) == 1:
|
|
number_of_trunc_bits = cfg.approximation_setting.number_of_trunc_bits[0]
|
|
logging.info(f"Number of trunc bits: {number_of_trunc_bits}")
|
|
|
|
number_of_frac_bits: int = -1
|
|
if len(cfg.approximation_setting.number_of_frac_bits) > layer_id:
|
|
number_of_frac_bits = cfg.approximation_setting.number_of_frac_bits[
|
|
layer_id
|
|
]
|
|
logging.info(f"Number of frac bits: {number_of_trunc_bits}")
|
|
elif len(cfg.approximation_setting.number_of_frac_bits) == 1:
|
|
number_of_frac_bits = cfg.approximation_setting.number_of_frac_bits[0]
|
|
logging.info(f"Number of frac bits: {number_of_trunc_bits}")
|
|
|
|
# Weights: Trainable?
|
|
w_trainable: bool = False
|
|
if len(cfg.learning_parameters.w_trainable) > layer_id:
|
|
w_trainable = cfg.learning_parameters.w_trainable[layer_id]
|
|
elif len(cfg.learning_parameters.w_trainable) == 1:
|
|
w_trainable = cfg.learning_parameters.w_trainable[0]
|
|
logging.info(f"W trainable?: {w_trainable}")
|
|
|
|
# SbS Setting
|
|
sbs_skip_gradient_calculation: bool = False
|
|
if len(cfg.learning_parameters.sbs_skip_gradient_calculation) > layer_id:
|
|
sbs_skip_gradient_calculation = (
|
|
cfg.learning_parameters.sbs_skip_gradient_calculation[layer_id]
|
|
)
|
|
elif len(cfg.learning_parameters.sbs_skip_gradient_calculation) == 1:
|
|
sbs_skip_gradient_calculation = (
|
|
cfg.learning_parameters.sbs_skip_gradient_calculation[0]
|
|
)
|
|
|
|
spike_full_layer_input_distribution: bool = False
|
|
if len(cfg.spike_full_layer_input_distribution) > layer_id:
|
|
spike_full_layer_input_distribution = (
|
|
cfg.spike_full_layer_input_distribution[layer_id]
|
|
)
|
|
|
|
# #############################################################
|
|
# SbS layer:
|
|
# #############################################################
|
|
|
|
if cfg.network_structure.layer_type[layer_id].upper().startswith("SBS") is True:
|
|
|
|
assert in_channels > 0
|
|
assert out_channels > 0
|
|
|
|
number_of_spikes: int = -1
|
|
if len(cfg.number_of_spikes) > layer_id:
|
|
number_of_spikes = cfg.number_of_spikes[layer_id]
|
|
elif len(cfg.number_of_spikes) == 1:
|
|
number_of_spikes = cfg.number_of_spikes[0]
|
|
|
|
assert number_of_spikes > 0
|
|
|
|
logging.info(
|
|
(
|
|
f"Layer: {layer_id} -> SbS Layer with {number_of_spikes} spikes "
|
|
f"-- draw spike from full layer: {spike_full_layer_input_distribution}"
|
|
)
|
|
)
|
|
is_pooling_layer: bool = False
|
|
if cfg.network_structure.layer_type[layer_id].upper().find("POOLING") != -1:
|
|
is_pooling_layer = True
|
|
|
|
local_learning = False
|
|
if cfg.network_structure.layer_type[layer_id].upper().find("LOCAL") != -1:
|
|
local_learning = True
|
|
|
|
output_layer = False
|
|
if layer_id == len(cfg.network_structure.layer_type) - 1:
|
|
output_layer = True
|
|
|
|
network.append(
|
|
SbSLayer(
|
|
number_of_input_neurons=in_channels,
|
|
number_of_neurons=out_channels,
|
|
input_size=input_size[-1],
|
|
forward_kernel_size=kernel_size,
|
|
number_of_spikes=number_of_spikes,
|
|
epsilon_xy_intitial=cfg.learning_parameters.eps_xy_intitial,
|
|
epsilon_0=cfg.epsilon_0,
|
|
weight_noise_range=weight_noise_range,
|
|
is_pooling_layer=is_pooling_layer,
|
|
strides=strides,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
number_of_cpu_processes=cfg.number_of_cpu_processes,
|
|
w_trainable=w_trainable,
|
|
keep_last_grad_scale=cfg.learning_parameters.kepp_last_grad_scale,
|
|
disable_scale_grade=cfg.learning_parameters.disable_scale_grade,
|
|
forgetting_offset=cfg.forgetting_offset,
|
|
skip_gradient_calculation=sbs_skip_gradient_calculation,
|
|
device=device,
|
|
default_dtype=default_dtype,
|
|
layer_id=layer_id,
|
|
cooldown_after_number_of_spikes=cfg.cooldown_after_number_of_spikes,
|
|
reduction_cooldown=cfg.reduction_cooldown,
|
|
force_forward_h_dynamic_on_cpu=cfg.force_forward_h_dynamic_on_cpu,
|
|
spike_full_layer_input_distribution=spike_full_layer_input_distribution,
|
|
local_learning=local_learning,
|
|
output_layer=output_layer,
|
|
)
|
|
)
|
|
# Adding the x,y output dimensions
|
|
input_size.append(network[-1]._output_size.tolist())
|
|
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id]
|
|
.upper()
|
|
.startswith("RECONSTRUCTION")
|
|
is True
|
|
):
|
|
logging.info(f"Layer: {layer_id} -> SbS Reconstruction Layer")
|
|
|
|
assert layer_id > 0
|
|
assert isinstance(network[-1], SbSLayer) is True
|
|
|
|
network.append(SbSReconstruction(network[-1]))
|
|
network[-1]._w_trainable = False
|
|
|
|
if layer_id == len(cfg.network_structure.layer_type) - 1:
|
|
network[-2].last_input_store = True
|
|
|
|
input_size.append(input_size[-1])
|
|
|
|
# #############################################################
|
|
# Split On Off Layer:
|
|
# #############################################################
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id].upper().startswith("ONOFF")
|
|
is True
|
|
):
|
|
logging.info(f"Layer: {layer_id} -> Split On Off Layer")
|
|
network.append(
|
|
SplitOnOffLayer(
|
|
device=device,
|
|
default_dtype=default_dtype,
|
|
)
|
|
)
|
|
input_size.append(input_size[-1])
|
|
|
|
# #############################################################
|
|
# PyTorch CONV2D layer:
|
|
# #############################################################
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id].upper().startswith("CONV2D")
|
|
is True
|
|
):
|
|
assert in_channels > 0
|
|
assert out_channels > 0
|
|
|
|
logging.info(f"Layer: {layer_id} -> CONV2D Layer")
|
|
network.append(
|
|
torch.nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=(int(kernel_size[0]), int(kernel_size[1])),
|
|
stride=(int(strides[0]), int(strides[1])),
|
|
dilation=(int(dilation[0]), int(dilation[1])),
|
|
bias=bias,
|
|
padding=(int(padding[0]), int(padding[1])),
|
|
device=device,
|
|
dtype=default_dtype,
|
|
)
|
|
)
|
|
|
|
# I need this later...
|
|
network[-1]._w_trainable = w_trainable
|
|
|
|
# Calculate the x,y output dimensions
|
|
input_size_temp = calculate_output_size(
|
|
value=input_size[-1],
|
|
kernel_size=kernel_size,
|
|
stride=strides,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
).tolist()
|
|
input_size.append(input_size_temp)
|
|
|
|
# #############################################################
|
|
# PyTorch RELU layer:
|
|
# #############################################################
|
|
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id].upper().startswith("RELU")
|
|
is True
|
|
):
|
|
logging.info(f"Layer: {layer_id} -> RELU Layer")
|
|
network.append(torch.nn.ReLU())
|
|
network[-1]._w_trainable = False
|
|
|
|
input_size.append(input_size[-1])
|
|
|
|
# #############################################################
|
|
# PyTorch MAX Pooling layer:
|
|
# #############################################################
|
|
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id].upper().startswith("MAX POOLING")
|
|
is True
|
|
):
|
|
logging.info(f"Layer: {layer_id} -> MAX POOLING Layer")
|
|
network.append(
|
|
torch.nn.MaxPool2d(
|
|
kernel_size=(int(kernel_size[0]), int(kernel_size[1])),
|
|
stride=(int(strides[0]), int(strides[1])),
|
|
padding=(int(padding[0]), int(padding[1])),
|
|
dilation=(int(dilation[0]), int(dilation[1])),
|
|
)
|
|
)
|
|
|
|
network[-1]._w_trainable = False
|
|
|
|
# Calculate the x,y output dimensions
|
|
input_size_temp = calculate_output_size(
|
|
value=input_size[-1],
|
|
kernel_size=kernel_size,
|
|
stride=strides,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
).tolist()
|
|
input_size.append(input_size_temp)
|
|
|
|
# #############################################################
|
|
# PyTorch Average Pooling layer:
|
|
# #############################################################
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id]
|
|
.upper()
|
|
.startswith("AVERAGE POOLING")
|
|
is True
|
|
):
|
|
logging.info(f"Layer: {layer_id} -> AVERAGE POOLING Layer")
|
|
network.append(
|
|
torch.nn.AvgPool2d(
|
|
kernel_size=(int(kernel_size[0]), int(kernel_size[1])),
|
|
stride=(int(strides[0]), int(strides[1])),
|
|
padding=(int(padding[0]), int(padding[1])),
|
|
)
|
|
)
|
|
|
|
network[-1]._w_trainable = False
|
|
|
|
# Calculate the x,y output dimensions
|
|
input_size_temp = calculate_output_size(
|
|
value=input_size[-1],
|
|
kernel_size=kernel_size,
|
|
stride=strides,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
).tolist()
|
|
input_size.append(input_size_temp)
|
|
|
|
# #############################################################
|
|
# Approx CONV2D layer:
|
|
# #############################################################
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id]
|
|
.upper()
|
|
.startswith("APPROX CONV2D")
|
|
is True
|
|
):
|
|
assert in_channels > 0
|
|
assert out_channels > 0
|
|
|
|
logging.info(f"Layer: {layer_id} -> Approximation CONV2D Layer")
|
|
network.append(
|
|
Conv2dApproximation(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=(int(kernel_size[0]), int(kernel_size[1])),
|
|
stride=(int(strides[0]), int(strides[1])),
|
|
dilation=(int(dilation[0]), int(dilation[1])),
|
|
bias=bias,
|
|
padding=(int(padding[0]), int(padding[1])),
|
|
device=device,
|
|
dtype=default_dtype,
|
|
approximation_enable=approximation_enable,
|
|
number_of_trunc_bits=number_of_trunc_bits,
|
|
number_of_frac=number_of_frac_bits,
|
|
number_of_processes=cfg.number_of_cpu_processes,
|
|
)
|
|
)
|
|
|
|
# I need this later...
|
|
network[-1]._w_trainable = w_trainable
|
|
|
|
# Calculate the x,y output dimensions
|
|
input_size_temp = calculate_output_size(
|
|
value=input_size[-1],
|
|
kernel_size=kernel_size,
|
|
stride=strides,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
).tolist()
|
|
input_size.append(input_size_temp)
|
|
|
|
# #############################################################
|
|
# Approx CONV2D layer:
|
|
# #############################################################
|
|
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id]
|
|
.upper()
|
|
.startswith("INPUT SPIKE IMAGE")
|
|
is True
|
|
):
|
|
logging.info(f"Layer: {layer_id} -> Input Spike Image Layer")
|
|
|
|
number_of_spikes: int = -1
|
|
if len(cfg.number_of_spikes) > layer_id:
|
|
number_of_spikes = cfg.number_of_spikes[layer_id]
|
|
elif len(cfg.number_of_spikes) == 1:
|
|
number_of_spikes = cfg.number_of_spikes[0]
|
|
|
|
network.append(
|
|
InputSpikeImage(
|
|
number_of_spikes=number_of_spikes,
|
|
number_of_cpu_processes=cfg.number_of_cpu_processes,
|
|
reshape=True,
|
|
normalize=True,
|
|
device=device,
|
|
)
|
|
)
|
|
|
|
network[-1]._w_trainable = False
|
|
|
|
input_size.append(input_size[-1])
|
|
|
|
# #############################################################
|
|
# NNMF:
|
|
# #############################################################
|
|
|
|
elif (
|
|
cfg.network_structure.layer_type[layer_id].upper().startswith("NNMF")
|
|
is True
|
|
):
|
|
|
|
assert in_channels > 0
|
|
assert out_channels > 0
|
|
|
|
number_of_iterations: int = -1
|
|
if len(cfg.number_of_spikes) > layer_id:
|
|
number_of_iterations = cfg.number_of_spikes[layer_id]
|
|
elif len(cfg.number_of_spikes) == 1:
|
|
number_of_iterations = cfg.number_of_spikes[0]
|
|
|
|
assert number_of_iterations > 0
|
|
|
|
logging.info(
|
|
(
|
|
f"Layer: {layer_id} -> NNMF Layer with {number_of_iterations} iterations "
|
|
)
|
|
)
|
|
|
|
local_learning = False
|
|
if cfg.network_structure.layer_type[layer_id].upper().find("LOCAL") != -1:
|
|
local_learning = True
|
|
|
|
output_layer = False
|
|
if layer_id == len(cfg.network_structure.layer_type) - 1:
|
|
output_layer = True
|
|
|
|
network.append(
|
|
NNMFLayer(
|
|
number_of_input_neurons=in_channels,
|
|
number_of_neurons=out_channels,
|
|
input_size=input_size[-1],
|
|
forward_kernel_size=kernel_size,
|
|
number_of_iterations=number_of_iterations,
|
|
epsilon_0=cfg.epsilon_0,
|
|
weight_noise_range=weight_noise_range,
|
|
strides=strides,
|
|
dilation=dilation,
|
|
padding=padding,
|
|
w_trainable=w_trainable,
|
|
device=device,
|
|
default_dtype=default_dtype,
|
|
layer_id=layer_id,
|
|
local_learning=local_learning,
|
|
output_layer=output_layer,
|
|
)
|
|
)
|
|
# Adding the x,y output dimensions
|
|
input_size.append(network[-1]._output_size.tolist())
|
|
|
|
# #############################################################
|
|
# Failure becaue we didn't found the selection of layer
|
|
# #############################################################
|
|
else:
|
|
raise Exception(
|
|
f"Unknown layer type: {cfg.network_structure.layer_type[layer_id]}"
|
|
)
|
|
|
|
return network
|