pytorch-sbs/test_it_noise.py
2023-01-29 00:58:06 +01:00

188 lines
4.6 KiB
Python

# %%
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import torch
import dataconf
import logging
from datetime import datetime
from network.Parameter import Config
from network.build_network import build_network
from network.build_optimizer import build_optimizer
from network.build_lr_scheduler import build_lr_scheduler
from network.build_datasets import build_datasets
from network.load_previous_weights import load_previous_weights
from network.loop_train_test import (
loop_test,
)
import numpy as np
# ######################################################################
# We want to log what is going on into a file and screen
# ######################################################################
now = datetime.now()
dt_string_filename = now.strftime("%Y_%m_%d_%H_%M_%S")
logging.basicConfig(
filename="log_" + dt_string_filename + ".txt",
filemode="w",
level=logging.INFO,
format="%(asctime)s %(message)s",
)
logging.getLogger().addHandler(logging.StreamHandler())
# ######################################################################
# Load the config data from the json file
# ######################################################################
if os.path.exists("def.json") is False:
raise Exception("Config file not found! def.json")
if os.path.exists("network.json") is False:
raise Exception("Config file not found! network.json")
if os.path.exists("dataset.json") is False:
raise Exception("Config file not found! dataset.json")
cfg = (
dataconf.multi.file("network.json").file("dataset.json").file("def.json").on(Config)
)
logging.info(cfg)
logging.info(f"Number of spikes: {cfg.number_of_spikes}")
logging.info(f"Cooldown after spikes: {cfg.cooldown_after_number_of_spikes}")
logging.info(f"Reduction cooldown: {cfg.reduction_cooldown}")
logging.info("")
logging.info(f"Epsilon 0: {cfg.epsilon_0}")
logging.info(f"Batch size: {cfg.batch_size}")
logging.info(f"Data mode: {cfg.data_mode}")
logging.info("")
logging.info("*** Config loaded.")
logging.info("")
# ###########################################
# GPU Yes / NO ?
# ###########################################
default_dtype = torch.float32
torch.set_default_dtype(default_dtype)
torch_device: str = "cuda:0" if torch.cuda.is_available() else "cpu"
use_gpu: bool = True if torch.cuda.is_available() else False
logging.info(f"Using {torch_device} device")
device = torch.device(torch_device)
# ######################################################################
# Prepare the test and training data
# ######################################################################
the_dataset_train, the_dataset_test, my_loader_test, my_loader_train = build_datasets(
cfg
)
logging.info("*** Data loaded.")
# ######################################################################
# Build the network, Optimizer, and LR Scheduler #
# ######################################################################
network = build_network(
cfg=cfg, device=device, default_dtype=default_dtype, logging=logging
)
logging.info("")
optimizer = build_optimizer(network=network, cfg=cfg, logging=logging)
lr_scheduler = build_lr_scheduler(optimizer=optimizer, cfg=cfg, logging=logging)
logging.info("*** Network generated.")
load_previous_weights(
network=network,
overload_path=cfg.learning_parameters.overload_path,
logging=logging,
device=device,
default_dtype=default_dtype,
)
logging.info("")
last_test_performance: float = -1.0
spike_list: list[int] = [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
20,
30,
40,
50,
60,
70,
80,
90,
100,
200,
300,
400,
500,
600,
700,
800,
900,
1000,
2000,
3000,
4000,
5000,
6000,
7000,
8000,
9000,
10000,
]
# ##############################################
# Run test data
# ##############################################
network.eval()
results = torch.zeros((2, len(spike_list)), dtype=torch.float32)
for sp_id, spikes_number in enumerate(spike_list):
print(f"Number of spikes: {spikes_number}")
last_test_performance = loop_test(
epoch_id=cfg.epoch_id,
cfg=cfg,
network=network,
my_loader_test=my_loader_test,
the_dataset_test=the_dataset_test,
device=device,
default_dtype=default_dtype,
logging=logging,
tb=None,
overwrite_number_of_spikes=spikes_number,
)
results[0, sp_id] = spikes_number
results[1, sp_id] = last_test_performance
np.save("results.npy", results.cpu().numpy())
# %%