pytorch-sbs/network/Dataset.py
2023-01-05 13:23:58 +01:00

317 lines
9.9 KiB
Python

from abc import ABC, abstractmethod
import torch
import numpy as np
import torchvision as tv # type: ignore
from network.Parameter import Config
class DatasetMaster(torch.utils.data.Dataset, ABC):
path_label: str
label_storage: np.ndarray
pattern_storage: np.ndarray
number_of_pattern: int
mean: list[float]
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__()
if train is True:
self.label_storage = np.load(path_label + "/TrainLabelStorage.npy")
else:
self.label_storage = np.load(path_label + "/TestLabelStorage.npy")
if train is True:
self.pattern_storage = np.load(path_pattern + "/TrainPatternStorage.npy")
else:
self.pattern_storage = np.load(path_pattern + "/TestPatternStorage.npy")
self.number_of_pattern = self.label_storage.shape[0]
self.mean = []
def __len__(self) -> int:
return self.number_of_pattern
# Get one pattern at position index
@abstractmethod
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
pass
@abstractmethod
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
pass
@abstractmethod
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
pass
class DatasetMNIST(DatasetMaster):
"""Contstructor"""
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__(train, path_pattern, path_label)
self.pattern_storage = np.ascontiguousarray(
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
)
self.pattern_storage /= np.max(self.pattern_storage)
mean = self.pattern_storage.mean(3).mean(2).mean(0)
self.mean = [*mean]
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
image = self.pattern_storage[index, 0:1, :, :]
target = int(self.label_storage[index])
return torch.tensor(image), target
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The test image comes in
1. is center cropped
2. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
gray = pattern[:, 0:1, :, :] + 1e-20
return gray
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The training image comes in
1. is cropped from a random position
2. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
gray = pattern[:, 0:1, :, :] + 1e-20
return gray
class DatasetFashionMNIST(DatasetMaster):
"""Contstructor"""
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__(train, path_pattern, path_label)
self.pattern_storage = np.ascontiguousarray(
self.pattern_storage[:, np.newaxis, :, :].astype(dtype=np.float32)
)
self.pattern_storage /= np.max(self.pattern_storage)
mean = self.pattern_storage.mean(3).mean(2).mean(0)
self.mean = [*mean]
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
image = self.pattern_storage[index, 0:1, :, :]
target = int(self.label_storage[index])
return torch.tensor(image), target
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The test image comes in
1. is center cropped
2. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
gray = pattern[:, 0:1, :, :] + 1e-20
return gray
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The training image comes in
1. is cropped from a random position
2. returned.
This is a 1 channel version (e.g. one gray channel).
"""
assert len(cfg.image_statistics.mean) == 1
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
tv.transforms.ColorJitter(
brightness=cfg.augmentation.jitter_brightness,
contrast=cfg.augmentation.jitter_contrast,
saturation=cfg.augmentation.jitter_saturation,
hue=cfg.augmentation.jitter_hue,
),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
gray = pattern[:, 0:1, :, :] + 1e-20
return gray
class DatasetCIFAR(DatasetMaster):
"""Contstructor"""
# Initialize
def __init__(
self,
train: bool = False,
path_pattern: str = "./",
path_label: str = "./",
) -> None:
super().__init__(train, path_pattern, path_label)
self.pattern_storage = np.ascontiguousarray(
np.moveaxis(self.pattern_storage.astype(dtype=np.float32), 3, 1)
)
self.pattern_storage /= np.max(self.pattern_storage)
mean = self.pattern_storage.mean(3).mean(2).mean(0)
self.mean = [*mean]
def __getitem__(self, index: int) -> tuple[torch.Tensor, int]:
image = self.pattern_storage[index, :, :, :]
target = int(self.label_storage[index])
return torch.tensor(image), target
def pattern_filter_test(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The test image comes in
1. is center cropped
2. returned.
This is a 3 channel version (e.g. r,g,b channels).
"""
assert len(cfg.image_statistics.mean) == 3
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.CenterCrop(size=cfg.image_statistics.the_size),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
r = pattern[:, 0:1, :, :] + 1e-20
g = pattern[:, 1:2, :, :] + 1e-20
b = pattern[:, 2:3, :, :] + 1e-20
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
return new_tensor
def pattern_filter_train(self, pattern: torch.Tensor, cfg: Config) -> torch.Tensor:
"""0. The training image comes in
1. is cropped from a random position
2. is randomly horizontally flipped
3. is randomly color jitteres
4. returned.
This is a 3 channel version (e.g. r,g,b channels).
"""
assert len(cfg.image_statistics.mean) == 3
assert len(cfg.image_statistics.the_size) == 2
assert cfg.image_statistics.the_size[0] > 0
assert cfg.image_statistics.the_size[1] > 0
# Transformation chain
my_transforms: torch.nn.Sequential = torch.nn.Sequential(
tv.transforms.RandomCrop(size=cfg.image_statistics.the_size),
tv.transforms.RandomHorizontalFlip(p=cfg.augmentation.flip_p),
tv.transforms.ColorJitter(
brightness=cfg.augmentation.jitter_brightness,
contrast=cfg.augmentation.jitter_contrast,
saturation=cfg.augmentation.jitter_saturation,
hue=cfg.augmentation.jitter_hue,
),
)
scripted_transforms = torch.jit.script(my_transforms)
# Preprocess the input data
pattern = scripted_transforms(pattern)
r = pattern[:, 0:1, :, :] + 1e-20
g = pattern[:, 1:2, :, :] + 1e-20
b = pattern[:, 2:3, :, :] + 1e-20
new_tensor: torch.Tensor = torch.cat((r, g, b), dim=1)
return new_tensor
if __name__ == "__main__":
pass