326 lines
8.3 KiB
C++
326 lines
8.3 KiB
C++
#include "HDynamicCNNCPU.h"
|
|
|
|
#include <omp.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iostream>
|
|
|
|
|
|
HDynamicCNNCPU::HDynamicCNNCPU()
|
|
{
|
|
|
|
};
|
|
|
|
HDynamicCNNCPU::~HDynamicCNNCPU()
|
|
{
|
|
|
|
};
|
|
|
|
void HDynamicCNNCPU::entrypoint(
|
|
int64_t h_pointer_addr,
|
|
int64_t h_dim_0,
|
|
int64_t h_dim_1,
|
|
int64_t h_dim_2,
|
|
int64_t h_dim_3,
|
|
int64_t epsilon_xy_pointer_addr,
|
|
int64_t epsilon_xy_dim_0,
|
|
int64_t epsilon_xy_dim_1,
|
|
int64_t epsilon_xy_dim_2,
|
|
int64_t epsilon_t_pointer_addr,
|
|
int64_t epsilon_t_dim_0,
|
|
int64_t weights_pointer_addr,
|
|
int64_t weights_dim_0,
|
|
int64_t weights_dim_1,
|
|
int64_t input_pointer_addr,
|
|
int64_t input_dim_0,
|
|
int64_t input_dim_1,
|
|
int64_t input_dim_2,
|
|
int64_t input_dim_3,
|
|
int64_t init_vector_pointer_addr,
|
|
int64_t init_vector_dim_0,
|
|
int64_t number_of_processes,
|
|
float forgetting_offset,
|
|
int64_t gpu_tuning_factor)
|
|
{
|
|
|
|
size_t number_of_pattern = input_dim_0;
|
|
|
|
size_t h_dim = init_vector_dim_0;
|
|
float* h_init_ptr = (float*)init_vector_pointer_addr;
|
|
assert((h_init_ptr != nullptr));
|
|
assert((h_dim > 0));
|
|
|
|
float* h_pointer = (float*)h_pointer_addr;
|
|
assert((h_pointer != nullptr));
|
|
assert((h_dim_0 > 0));
|
|
assert((h_dim_1 > 0));
|
|
assert((h_dim_2 > 0));
|
|
assert((h_dim_3 > 0));
|
|
|
|
size_t h_dim_c0 = h_dim_1 * h_dim_2 * h_dim_3;
|
|
size_t h_dim_c1 = h_dim_2 * h_dim_3;
|
|
size_t h_dim_c2 = h_dim_3;
|
|
|
|
float* epsilon_xy_pointer = (float*)epsilon_xy_pointer_addr;
|
|
assert((epsilon_xy_pointer != nullptr));
|
|
assert((epsilon_xy_dim_0 > 0));
|
|
assert((epsilon_xy_dim_1 > 0));
|
|
|
|
size_t epsilon_xy_dim_c0 = epsilon_xy_dim_2 * epsilon_xy_dim_1;
|
|
size_t epsilon_xy_dim_c1 = epsilon_xy_dim_2;
|
|
|
|
float* epsilon_t_pointer = (float*)epsilon_t_pointer_addr;
|
|
assert((epsilon_t_pointer != nullptr));
|
|
assert((epsilon_t_dim_0 > 0));
|
|
|
|
float* weights_pointer = (float*)weights_pointer_addr;
|
|
assert((weights_pointer != nullptr));
|
|
assert((weights_dim_0 > 0));
|
|
assert((weights_dim_1 > 0));
|
|
|
|
size_t weights_dim_c0 = weights_dim_1;
|
|
|
|
int64_t* input_pointer = (int64_t*)input_pointer_addr;
|
|
assert((input_pointer != nullptr));
|
|
assert((input_dim_0 > 0));
|
|
assert((input_dim_1 > 0));
|
|
assert((input_dim_2 > 0));
|
|
assert((input_dim_3 > 0));
|
|
|
|
size_t input_dim_c0 = input_dim_1 * input_dim_2 * input_dim_3;
|
|
size_t input_dim_c1 = input_dim_2 * input_dim_3;
|
|
size_t input_dim_c2 = input_dim_3;
|
|
|
|
assert((h_dim == weights_dim_1));
|
|
size_t number_of_spikes = input_dim_1;
|
|
size_t dim_x = input_dim_2;
|
|
size_t dim_y = input_dim_3;
|
|
|
|
float forgetting_offset_local = forgetting_offset / static_cast<float>(h_dim);
|
|
|
|
|
|
// --------------------
|
|
assert((number_of_processes > 0));
|
|
omp_set_num_threads(number_of_processes);
|
|
|
|
#pragma omp parallel for
|
|
for (size_t pattern_id = 0; pattern_id < number_of_pattern; pattern_id++)
|
|
{
|
|
update(
|
|
h_init_ptr,
|
|
h_pointer,
|
|
h_dim_c0,
|
|
h_dim_c1,
|
|
h_dim_c2,
|
|
h_dim,
|
|
epsilon_xy_pointer,
|
|
epsilon_xy_dim_c0,
|
|
epsilon_xy_dim_c1,
|
|
epsilon_t_pointer,
|
|
weights_pointer,
|
|
weights_dim_c0,
|
|
input_pointer,
|
|
input_dim_c0,
|
|
input_dim_c1,
|
|
input_dim_c2,
|
|
number_of_spikes,
|
|
dim_x,
|
|
dim_y,
|
|
forgetting_offset,
|
|
forgetting_offset_local,
|
|
pattern_id);
|
|
}
|
|
|
|
return;
|
|
};
|
|
|
|
|
|
void HDynamicCNNCPU::update(
|
|
float* h_init_ptr,
|
|
float* h_pointer,
|
|
size_t h_dim_c0,
|
|
size_t h_dim_c1,
|
|
size_t h_dim_c2,
|
|
size_t h_dim,
|
|
float* epsilon_xy_pointer,
|
|
size_t epsilon_xy_dim_c0,
|
|
size_t epsilon_xy_dim_c1,
|
|
float* epsilon_t_pointer,
|
|
float* weights_pointer,
|
|
size_t weights_dim_c0,
|
|
int64_t* input_pointer,
|
|
size_t input_dim_c0,
|
|
size_t input_dim_c1,
|
|
size_t input_dim_c2,
|
|
size_t number_of_spikes,
|
|
size_t dim_x,
|
|
size_t dim_y,
|
|
float forgetting_offset,
|
|
float forgetting_offset_local,
|
|
size_t pattern_id)
|
|
{
|
|
|
|
float* h_ptr;
|
|
float* epsilon_xy_ptr;
|
|
int64_t* input_ptr;
|
|
|
|
for (size_t counter_x = 0; counter_x < dim_x; counter_x++)
|
|
{
|
|
for (size_t counter_y = 0; counter_y < dim_y; counter_y++)
|
|
{
|
|
epsilon_xy_ptr = epsilon_xy_pointer +
|
|
counter_x * epsilon_xy_dim_c1 + counter_y;
|
|
|
|
h_ptr = h_pointer +
|
|
pattern_id * h_dim_c0 + counter_x * h_dim_c2 + counter_y;
|
|
|
|
input_ptr = input_pointer +
|
|
pattern_id * input_dim_c0 + counter_x * input_dim_c2 + counter_y;
|
|
|
|
update_one_ip(
|
|
h_init_ptr,
|
|
h_ptr,
|
|
h_dim_c1,
|
|
h_dim,
|
|
weights_pointer,
|
|
weights_dim_c0,
|
|
input_ptr,
|
|
input_dim_c1,
|
|
epsilon_xy_ptr,
|
|
epsilon_xy_dim_c0,
|
|
epsilon_t_pointer,
|
|
number_of_spikes,
|
|
forgetting_offset,
|
|
forgetting_offset_local);
|
|
|
|
}
|
|
}
|
|
|
|
return;
|
|
};
|
|
|
|
void HDynamicCNNCPU::update_one_ip(
|
|
float* h_init_ptr,
|
|
float* h_pointer,
|
|
size_t h_dim_c1,
|
|
size_t h_dim,
|
|
float* weights_pointer,
|
|
size_t weights_dim_c0,
|
|
int64_t* input_pointer,
|
|
size_t input_dim_c1,
|
|
float* epsilon_xy_pointer,
|
|
size_t epsilon_xy_dim_c0,
|
|
float* epsilon_t_pointer,
|
|
size_t number_of_spikes,
|
|
float forgetting_offset,
|
|
float forgetting_offset_local)
|
|
{
|
|
|
|
float* h_temp = new float[h_dim];
|
|
float* h_subsegment = new float[h_dim];
|
|
|
|
memcpy(h_subsegment, h_init_ptr, sizeof(float) * h_dim);
|
|
|
|
float h_temp_sum;
|
|
float temp_value;
|
|
|
|
float epsilon_subsegment;
|
|
float epsilon_scale = 1.0;
|
|
|
|
int64_t* spike;
|
|
float* w_ptr;
|
|
|
|
for (size_t counter_spike = 0; counter_spike < number_of_spikes; counter_spike++)
|
|
{
|
|
if (epsilon_scale > 1E10)
|
|
{
|
|
temp_value = 1.0 / epsilon_scale;
|
|
|
|
#pragma omp simd
|
|
for (size_t counter = 0; counter < h_dim; counter++)
|
|
{
|
|
h_subsegment[counter] *= temp_value;
|
|
}
|
|
|
|
epsilon_scale = 1.0;
|
|
}
|
|
|
|
spike = input_pointer + counter_spike * input_dim_c1;
|
|
|
|
if (*spike >= 0)
|
|
{
|
|
epsilon_subsegment =
|
|
epsilon_xy_pointer[*spike * epsilon_xy_dim_c0] * epsilon_t_pointer[counter_spike];
|
|
|
|
w_ptr = weights_pointer + *spike * weights_dim_c0;
|
|
|
|
memcpy(h_temp, h_subsegment, sizeof(float) * h_dim);
|
|
|
|
#pragma omp simd
|
|
for (size_t counter = 0; counter < h_dim; counter++)
|
|
{
|
|
h_temp[counter] *= w_ptr[counter];
|
|
}
|
|
|
|
h_temp_sum = 0.0;
|
|
#pragma omp simd reduction(+ : h_temp_sum)
|
|
for (size_t counter = 0; counter < h_dim; counter++)
|
|
{
|
|
h_temp_sum += h_temp[counter];
|
|
}
|
|
|
|
if (h_temp_sum > 1E-10)
|
|
{
|
|
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
|
|
|
|
#pragma omp simd
|
|
for (size_t counter = 0; counter < h_dim; counter++)
|
|
{
|
|
h_temp[counter] *= temp_value;
|
|
}
|
|
|
|
#pragma omp simd
|
|
for (size_t counter = 0; counter < h_dim; counter++)
|
|
{
|
|
h_subsegment[counter] += h_temp[counter];
|
|
}
|
|
|
|
if (forgetting_offset_local > 0.0)
|
|
{
|
|
temp_value =
|
|
epsilon_scale * epsilon_subsegment * forgetting_offset_local;
|
|
|
|
#pragma omp simd
|
|
for (size_t counter = 0; counter < h_dim; counter++)
|
|
{
|
|
h_subsegment[counter] += temp_value;
|
|
}
|
|
|
|
epsilon_scale *=
|
|
1.0 + epsilon_subsegment * (1.0 + forgetting_offset);
|
|
}
|
|
else
|
|
{
|
|
epsilon_scale *= 1.0 + epsilon_subsegment * 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
temp_value = 1.0 / epsilon_scale;
|
|
#pragma omp simd
|
|
for (size_t counter = 0; counter < h_dim; counter++)
|
|
{
|
|
h_pointer[counter * h_dim_c1] =
|
|
h_subsegment[counter] * temp_value;
|
|
}
|
|
|
|
delete[] h_temp;
|
|
delete[] h_subsegment;
|
|
|
|
return;
|
|
};
|
|
|