SbS Extension for PyTorch
Find a file
2022-04-30 02:17:18 +02:00
C++ C++ module 2022-04-30 02:07:55 +02:00
DATA_CIFAR10 Example data converter 2022-04-30 02:06:41 +02:00
DATA_FASHION_MNIST Example data converter 2022-04-30 02:06:41 +02:00
DATA_MNIST Example data converter 2022-04-30 02:06:41 +02:00
Dataset.py First version 2022-04-30 02:07:09 +02:00
learn_it.py First version 2022-04-30 02:07:09 +02:00
LICENSE Initial commit 2022-04-30 02:03:34 +02:00
Parameter.py First version 2022-04-30 02:07:09 +02:00
PyHDynamicCNNManyIP.pyi First version 2022-04-30 02:07:09 +02:00
PySpikeGeneration2DManyIP.pyi First version 2022-04-30 02:07:09 +02:00
README.md Update README.md 2022-04-30 02:17:18 +02:00
SbS.py First version 2022-04-30 02:07:09 +02:00

pytorch-sbs

SbS Extension for PyTorch

Based on the scientific papers:

Back-Propagation Learning in Deep Spike-By-Spike Networks
David Rotermund and Klaus R. Pawelzik
Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055
https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full

Efficient Computation Based on Stochastic Spikes
Udo Ernst, David Rotermund, and Klaus Pawelzik
Neural Computation (2007) 19 (5): 13131343. https://doi.org/10.1162/neco.2007.19.5.1313
https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes