pytorch-sbs/network/loop_train_test.py
2023-01-05 13:23:58 +01:00

512 lines
16 KiB
Python

import torch
import time
from network.Parameter import Config
from torch.utils.tensorboard import SummaryWriter
from network.SbS import SbS
from network.save_weight_and_bias import save_weight_and_bias
def add_weight_and_bias_to_histogram(
network: torch.nn.modules.container.Sequential,
tb: SummaryWriter,
iteration_number: int,
) -> None:
for id in range(0, len(network)):
# ################################################
# Log the SbS Weights
# ################################################
if isinstance(network[id], SbS) is True:
if network[id]._w_trainable is True:
try:
tb.add_histogram(
f"Weights Layer {id}",
network[id].weights,
iteration_number,
)
except ValueError:
pass
# ################################################
# Log the Conv2 Weights and Biases
# ################################################
if isinstance(network[id], torch.nn.modules.conv.Conv2d) is True:
if network[id]._w_trainable is True:
try:
tb.add_histogram(
f"Weights Layer {id}",
network[id]._parameters["weight"].data,
iteration_number,
)
except ValueError:
pass
try:
tb.add_histogram(
f"Bias Layer {id}",
network[id]._parameters["bias"].data,
iteration_number,
)
except ValueError:
pass
tb.flush()
# loss_mode == 0: "normal" SbS loss function mixture
# loss_mode == 1: cross_entropy
def loss_function(
h: torch.Tensor,
labels: torch.Tensor,
device: torch.device,
default_dtype: torch.dtype,
loss_mode: int = 0,
number_of_output_neurons: int = 10,
loss_coeffs_mse: float = 0.0,
loss_coeffs_kldiv: float = 0.0,
) -> torch.Tensor | None:
assert loss_mode >= 0
assert loss_mode <= 1
h = h.squeeze(-1).squeeze(-1)
assert h.ndim == 2
if loss_mode == 0:
# Convert label into one hot
target_one_hot: torch.Tensor = torch.zeros(
(
labels.shape[0],
number_of_output_neurons,
),
device=device,
dtype=default_dtype,
)
target_one_hot.scatter_(
1,
labels.to(device).unsqueeze(1),
torch.ones(
(labels.shape[0], 1),
device=device,
dtype=default_dtype,
),
).unsqueeze(-1).unsqueeze(-1)
h_y1 = torch.log(h + 1e-20)
my_loss: torch.Tensor = (
torch.nn.functional.mse_loss(
h,
target_one_hot,
reduction="sum",
)
* loss_coeffs_mse
+ torch.nn.functional.kl_div(h_y1, target_one_hot + 1e-20, reduction="sum")
* loss_coeffs_kldiv
) / (loss_coeffs_kldiv + loss_coeffs_mse)
return my_loss
elif loss_mode == 1:
my_loss = torch.nn.functional.cross_entropy(
h.squeeze(-1).squeeze(-1), labels.to(device)
)
return my_loss
else:
return None
def forward_pass_train(
input: torch.Tensor,
labels: torch.Tensor,
the_dataset_train,
cfg: Config,
network: torch.nn.modules.container.Sequential,
device: torch.device,
default_dtype: torch.dtype,
) -> list[torch.Tensor]:
h_collection = []
h_collection.append(
the_dataset_train.pattern_filter_train(input, cfg)
.type(dtype=default_dtype)
.to(device=device)
)
for id in range(0, len(network)):
if isinstance(network[id], SbS) is True:
h_collection.append(network[id](h_collection[-1], labels))
else:
h_collection.append(network[id](h_collection[-1]))
return h_collection
def forward_pass_test(
input: torch.Tensor,
the_dataset_test,
cfg: Config,
network: torch.nn.modules.container.Sequential,
device: torch.device,
default_dtype: torch.dtype,
) -> list[torch.Tensor]:
h_collection = []
h_collection.append(
the_dataset_test.pattern_filter_test(input, cfg)
.type(dtype=default_dtype)
.to(device=device)
)
for id in range(0, len(network)):
h_collection.append(network[id](h_collection[-1]))
return h_collection
def run_optimizer(
network: torch.nn.modules.container.Sequential,
optimizer: list,
cfg: Config,
) -> None:
for id in range(0, len(network)):
if isinstance(network[id], SbS) is True:
network[id].update_pre_care()
for optimizer_item in optimizer:
if optimizer_item is not None:
optimizer_item.step()
for id in range(0, len(network)):
if isinstance(network[id], SbS) is True:
network[id].update_after_care(
cfg.learning_parameters.learning_rate_threshold_w
/ float(
network[id]._number_of_input_neurons
# * network[id]._kernel_size[0]
# * network[id]._kernel_size[1]
),
)
# ####################################
# Update the learning rate
# ####################################
def run_lr_scheduler(
cfg: Config,
lr_scheduler,
optimizer,
performance_for_batch: float,
my_loss_for_batch: float,
tb,
logging,
) -> None:
# Inter-epoch learning rate adaptation
for lr_scheduler_item in lr_scheduler:
if (
(lr_scheduler_item is not None)
and (performance_for_batch >= 0.0)
and (my_loss_for_batch >= 0.0)
):
if cfg.learning_parameters.lr_scheduler_use_performance is True:
lr_scheduler_item.step(100.0 - performance_for_batch)
else:
lr_scheduler_item.step(my_loss_for_batch)
tb.add_scalar(
"Train Error",
100.0 - performance_for_batch,
cfg.epoch_id,
)
tb.add_scalar("Train Loss", my_loss_for_batch, cfg.epoch_id)
tb.add_scalar(
"Learning Rate Scale WF",
optimizer[0].param_groups[-1]["lr"],
cfg.epoch_id,
)
tb.flush()
# def deal_with_gradient_scale(epoch_id: int, mini_batch_number: int, network):
# if (epoch_id == 0) and (mini_batch_number == 0):
# for id in range(0, len(network)):
# if isinstance(network[id], SbS) is True:
# network[id].after_batch(True)
# else:
# for id in range(0, len(network)):
# if isinstance(network[id], SbS) is True:
# network[id].after_batch()
def loop_train(
cfg: Config,
network: torch.nn.modules.container.Sequential,
my_loader_train: torch.utils.data.dataloader.DataLoader,
the_dataset_train,
optimizer: list,
device: torch.device,
default_dtype: torch.dtype,
logging,
adapt_learning_rate: bool,
tb: SummaryWriter,
lr_scheduler,
last_test_performance: float,
) -> tuple[float, float, float, float]:
correct_in_minibatch: int = 0
loss_in_minibatch: float = 0.0
number_of_pattern_in_minibatch: int = 0
mini_batch_number: int = -1
full_loss: float = 0.0
full_correct: float = 0.0
full_count: float = 0.0
epoch_id: int = cfg.epoch_id
my_loss_for_batch: float = -1.0
performance_for_batch: float = -1.0
time_forward: float = 0.0
time_backward: float = 0.0
with torch.enable_grad():
for h_x, h_x_labels in my_loader_train:
time_mini_batch_start: float = time.perf_counter()
# ############################################################
# Reset the gradient after an update (or the first loop pass)
# ############################################################
if number_of_pattern_in_minibatch == 0:
# Reset the gradient of the torch optimizers
for optimizer_item in optimizer:
if optimizer_item is not None:
optimizer_item.zero_grad()
loss_in_minibatch = 0.0
mini_batch_number += 1
correct_in_minibatch = 0
time_forward = 0.0
time_backward = 0.0
# ####################################
# Update the learning rate
# ####################################
if adapt_learning_rate is True:
run_lr_scheduler(
cfg=cfg,
lr_scheduler=lr_scheduler,
optimizer=optimizer,
performance_for_batch=performance_for_batch,
my_loss_for_batch=my_loss_for_batch,
tb=tb,
logging=logging,
)
logging.info(
(
f"\t\t\tLearning rate: "
f"weights:{optimizer[0].param_groups[-1]['lr']:^15.3e} "
)
)
if last_test_performance < 0:
logging.info("")
else:
logging.info(
(
f"\t\t\tLast test performance: "
f"{last_test_performance/100.0:^6.2%}"
)
)
logging.info("----------------")
number_of_pattern_in_minibatch += h_x_labels.shape[0]
full_count += h_x_labels.shape[0]
# #####################################################
# The network does the forward pass (training)
# #####################################################
h_collection = forward_pass_train(
input=h_x,
labels=h_x_labels,
the_dataset_train=the_dataset_train,
cfg=cfg,
network=network,
device=device,
default_dtype=default_dtype,
)
# #####################################################
# Calculate the loss function
# #####################################################
my_loss: torch.Tensor | None = loss_function(
h=h_collection[-1],
labels=h_x_labels,
device=device,
default_dtype=default_dtype,
loss_mode=cfg.learning_parameters.loss_mode,
number_of_output_neurons=int(
cfg.network_structure.number_of_output_neurons
),
loss_coeffs_mse=float(cfg.learning_parameters.loss_coeffs_mse),
loss_coeffs_kldiv=float(cfg.learning_parameters.loss_coeffs_kldiv),
)
assert my_loss is not None
time_after_forward_and_loss: float = time.perf_counter()
# #####################################################
# Backward pass
# #####################################################
my_loss.backward()
loss_in_minibatch += my_loss.item()
full_loss += my_loss.item()
time_after_backward: float = time.perf_counter()
# #####################################################
# Performance measures
# #####################################################
correct_in_minibatch += (
(h_collection[-1].argmax(dim=1).squeeze().cpu() == h_x_labels)
.sum()
.item()
)
full_correct += (
(h_collection[-1].argmax(dim=1).squeeze().cpu() == h_x_labels)
.sum()
.item()
)
# We measure the scale of the propagated error
# during the first minibatch
# then we remember this size and scale
# the future error with it
# Kind of deals with the vanishing /
# exploding gradients
# deal_with_gradient_scale(
# epoch_id=epoch_id,
# mini_batch_number=mini_batch_number,
# network=network,
# )
# Measure the time for one mini-batch
time_forward += time_after_forward_and_loss - time_mini_batch_start
time_backward += time_after_backward - time_after_forward_and_loss
if number_of_pattern_in_minibatch >= cfg.get_update_after_x_pattern():
logging.info(
(
f"{epoch_id:^6}=>{mini_batch_number:^6} "
f"\t\tTraining {number_of_pattern_in_minibatch^6} pattern "
f"with {correct_in_minibatch/number_of_pattern_in_minibatch:^6.2%} "
f"\tForward time: \t{time_forward:^6.2f}sec"
)
)
logging.info(
(
f"\t\t\tLoss: {loss_in_minibatch/number_of_pattern_in_minibatch:^15.3e} "
f"\t\t\tBackward time: \t{time_backward:^6.2f}sec "
)
)
my_loss_for_batch = loss_in_minibatch / number_of_pattern_in_minibatch
performance_for_batch = (
100.0 * correct_in_minibatch / number_of_pattern_in_minibatch
)
# ################################################
# Update the weights and biases
# ################################################
run_optimizer(network=network, optimizer=optimizer, cfg=cfg)
# ################################################
# Save the Weights and Biases
# ################################################
save_weight_and_bias(
cfg=cfg, network=network, iteration_number=epoch_id
)
# ################################################
# Log the Weights and Biases
# ################################################
add_weight_and_bias_to_histogram(
network=network,
tb=tb,
iteration_number=epoch_id,
)
# ################################################
# Mark mini batch as done
# ################################################
number_of_pattern_in_minibatch = 0
return (
my_loss_for_batch,
performance_for_batch,
(full_loss / full_count),
(100.0 * full_correct / full_count),
)
def loop_test(
epoch_id: int,
cfg: Config,
network: torch.nn.modules.container.Sequential,
my_loader_test: torch.utils.data.dataloader.DataLoader,
the_dataset_test,
device: torch.device,
default_dtype: torch.dtype,
logging,
tb: SummaryWriter,
) -> float:
test_correct = 0
test_count = 0
test_complete: int = the_dataset_test.__len__()
logging.info("")
logging.info("Testing:")
for h_x, h_x_labels in my_loader_test:
time_0 = time.perf_counter()
h_collection = forward_pass_test(
input=h_x,
the_dataset_test=the_dataset_test,
cfg=cfg,
network=network,
device=device,
default_dtype=default_dtype,
)
h_h: torch.Tensor = h_collection[-1].detach().clone().cpu()
test_correct += (h_h.argmax(dim=1).squeeze() == h_x_labels).sum().numpy()
test_count += h_h.shape[0]
performance = 100.0 * test_correct / test_count
time_1 = time.perf_counter()
time_measure_a = time_1 - time_0
logging.info(
(
f"\t\t{test_count} of {test_complete}"
f" with {performance/100:^6.2%} \t Time used: {time_measure_a:^6.2f}sec"
)
)
logging.info("")
tb.add_scalar("Test Error", 100.0 - performance, epoch_id)
tb.flush()
return performance