SbS Extension for PyTorch
Find a file
2022-04-30 14:51:02 +02:00
C++ C++ module 2022-04-30 02:07:55 +02:00
DATA_CIFAR10 Example data converter 2022-04-30 02:06:41 +02:00
DATA_FASHION_MNIST Example data converter 2022-04-30 02:06:41 +02:00
DATA_MNIST Example data converter 2022-04-30 02:06:41 +02:00
Dataset.py First version 2022-04-30 02:07:09 +02:00
learn_it.py LR Scheduler: Separated the eps and w parameters 2022-04-30 13:40:51 +02:00
LICENSE Initial commit 2022-04-30 02:03:34 +02:00
Parameter.py First version 2022-04-30 02:07:09 +02:00
PyHDynamicCNNManyIP.pyi First version 2022-04-30 02:07:09 +02:00
PySpikeGeneration2DManyIP.pyi First version 2022-04-30 02:07:09 +02:00
README.md Update README.md 2022-04-30 14:51:02 +02:00
SbS.py First version 2022-04-30 02:07:09 +02:00

pytorch-sbs

SbS Extension for PyTorch

Based on these scientific papers

Back-Propagation Learning in Deep Spike-By-Spike Networks
David Rotermund and Klaus R. Pawelzik
Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055
https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full

Efficient Computation Based on Stochastic Spikes
Udo Ernst, David Rotermund, and Klaus Pawelzik
Neural Computation (2007) 19 (5): 13131343. https://doi.org/10.1162/neco.2007.19.5.1313
https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes

Python

It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you might get problems with older Python versions.

C++

It works without compiling the C++ modules. However it is 10x slower.
You need to modify the Makefile in the C++ directory to your Python installation.
In addition yoir Python installation needs the PyBind11 package installed. You might want to perform a
pip install pybind11
The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile. The SbS.py autodetectes if the required C++ .so modules are in the same directory as the SbS.py file.

Parameters in JSON file

network_structure (required!)

Parameters of the network. The details about its layers and the number of output neurons.

number_of_output_neurons: int = field(default=0)
forward_neuron_numbers: list[list[int]] = field(default_factory=list)
is_pooling_layer: list[bool] = field(default_factory=list)

forward_kernel_size: list[list[int]] = field(default_factory=list)
strides: list[list[int]] = field(default_factory=list)
dilation: list[list[int]] = field(default_factory=list)
padding: list[list[int]] = field(default_factory=list)

w_trainable: list[bool] = field(default_factory=list)
eps_xy_trainable: list[bool] = field(default_factory=list)
eps_xy_mean: list[bool] = field(default_factory=list)

learning_parameters

Parameter required for training

learning_active: bool = field(default=True)

loss_coeffs_mse: float = field(default=0.5)
loss_coeffs_kldiv: float = field(default=1.0)

optimizer_name: str = field(default="Adam")
learning_rate_gamma_w: float = field(default=-1.0)
learning_rate_gamma_eps_xy: float = field(default=-1.0)
learning_rate_threshold_w: float = field(default=0.00001)
learning_rate_threshold_eps_xy: float = field(default=0.00001)

lr_schedule_name: str = field(default="ReduceLROnPlateau")
lr_scheduler_factor_w: float = field(default=0.75)
lr_scheduler_patience_w: int = field(default=-1)

lr_scheduler_factor_eps_xy: float = field(default=0.75)
lr_scheduler_patience_eps_xy: int = field(default=-1)

number_of_batches_for_one_update: int = field(default=1)
overload_path: str = field(default="./Previous")

weight_noise_amplitude: float = field(default=0.01)
eps_xy_intitial: float = field(default=0.1)

test_every_x_learning_steps: int = field(default=50)
test_during_learning: bool = field(default=True)

alpha_number_of_iterations: int = field(default=0)

augmentation

Parameters used for data augmentation.

crop_width_in_pixel: int = field(default=2)

flip_p: float = field(default=0.5)

jitter_brightness: float = field(default=0.5) jitter_contrast: float = field(default=0.1) jitter_saturation: float = field(default=0.1) jitter_hue: float = field(default=0.15)

ImageStatistics (please ignore)

(Statistical) information about the input. i.e. mean values and the x and y size of the input

mean: list[float] = field(default_factory=list) the_size: list[int] = field(default_factory=list)