
PyTorch Introduction
A Stroll Through the Zoo of PyTorch

David Rotermund & Udo Ernst

PyTorch is a machine learning library based on the Torch library,[4][5][6] used for applications
such as computer vision and natural language processing,[7] originally developed by Meta AI
and now part of the Linux Foundation umbrella.[8][9][10][11] It is one of the most popular deep
learning frameworks, alongside others such as TensorFlow,[12] offering free and open-source
software released under the modified BSD license. Although the Python interface is more
polished and the primary focus of development, PyTorch also has a C++ interface.[13]

A number of pieces of deep learning software are built on top of PyTorch, including Tesla
Autopilot,[14] Uber's Pyro,[15] Hugging Face's Transformers,[16][17] and Catalyst.[18][19]

PyTorch provides two high-level features:[20]

• Tensor computing (like NumPy) with strong acceleration via graphics processing units
(GPU)

• Deep neural networks built on a tape-based automatic differentiation system

Installing PyTorch
• Windows
§ CPU only
pip3 install torch torchvision torchaudio torchtext
§ NVidia GPU
pip3 install torch torchvision torchaudio torchtext --index-url https://download.pytorch.org/whl/cu121

• Linux
§ CPU only
cd /home/[YOURUSERNAME]/P3.12/bin
./pip3 install torch torchvision torchaudio torchtext --index-url https://download.pytorch.org/whl/cpu
§ NVidia GPU
cd /home/[YOURUSERNAME]/P3.12/bin
./pip3 install torch torchvision torchaudio torchtext

https://davrot.github.io/pytutorial/workflow/python_pure/

Check here for an installation configurator.

https://davrot.github.io/pytutorial/workflow/python_pure/
https://pytorch.org/get-started/locally/#start-locally

PyTorch Packages
Package

torch PyTorch is a Python package that provides two
high-level features: a. Tensor computation (like
NumPy) with strong GPU acceleration b. Deep
neural networks built on a tape-based autograd
system

torchvision The torchvision package consists of popular
datasets, model architectures, and common image
transformations for computer vision.

torchaudio The aim of torchaudio is to apply PyTorch to the
audio domain.

torchtext Models, data loaders and abstractions for language
processing, powered by PyTorch

https://pytorch.org/
https://github.com/pytorch/vision
https://github.com/pytorch/audio
https://github.com/pytorch/text

Open Book: Dive into Deep Learning
• ASTON ZHANG
• ZACHARY C. LIPTON
• MU LI
• ALEXANDER J. SMOLA
https://d2l.ai/d2l-en.pdf

Recommendation

https://d2l.ai/d2l-en.pdf

Welcome to the PyTorch Zoo!
I asked our local AI to give us a tour
through the PyTorch Layer Zoo....

• A network is a combination of layers.
• When ever we can, we should use existing layers types.
• We can make our own layers.
• Layers are in torch.nn. and the name of layer starts with an
upper case letter.

Let us look what is available and what is relevant.

Layers are the basic building blocks in PyTorch

https://pytorch.org/docs/stable/nn.html

The Foundation - Module
The journey begins at the foundation of PyTorch's
neural network architecture: Module. This
ancestral class is the root of all layers, providing
the basic structure and functionality that enables
the creation of complex neural networks. Just as a
strong foundation is essential for building a sturdy
structure, Module lays the groundwork for the
various layers and modules that follow, including
linear layers, convolutional layers, and more.
Explore the fundamental components of Module,
such as parameters, buffers, and hooks, to
understand how they facilitate the construction of
diverse neural network architectures.

Existing layers - Containers
Module Base class for all neural network modules.

= relevant

https://pytorch.org/docs/stable/nn.html#containers
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

Sequential Containers - The Snake Pit
The next exhibit takes you to the Snake Pit,
where a winding snake-like structure
represents the concept of sequential
containers in Python. Just as a snake grows
and shrinks as it consumes its prey, a
sequential container can dynamically add or
remove elements, allowing for efficient storage
and manipulation of data. Explore the different
segments of the snake, each representing a
single element in the container, and learn how
indexing and slicing enable you to access and
manipulate the data with ease.

Existing layers - Containers
Sequential A sequential container.
ModuleList Holds submodules in a list.
ModuleDict Holds submodules in a dictionary.
ParameterList Holds parameters in a list.
ParameterDict Holds parameters in a dictionary.

= relevant

https://pytorch.org/docs/stable/nn.html#containers
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential

Linear Layer - The Lion
The first exhibit features the Linear
Layer, represented by a regal lion. Just
as a lion's mane connects its head to
its body, the Linear Layer connects
every input to every output. The lion's
strength and agility symbolize the
layer's ability to tackle complex tasks.

From “Dive into Deep Learning”

Existing layers - Linear Layers

torch.nn.Identity A placeholder identity operator that is argument-insensitive

torch.nn.Linear Applies a linear transformation to the incoming data

torch.nn.Bilinear Applies a bilinear transformation to the incoming data

torch.nn.LazyLinear A torch.nn.Linear module where in_features is inferred.

= relevant

https://pytorch.org/docs/stable/nn.html#linear-layers
https://pytorch.org/docs/stable/generated/torch.nn.Identity.html#torch.nn.Identity
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html#torch.nn.Bilinear
https://pytorch.org/docs/stable/generated/torch.nn.LazyLinear.html#torch.nn.LazyLinear

Convolutional Layer - The Cheetah
Next, you'll visit the Convolutional
Layer exhibit, featuring a swift cheetah.
The cheetah's speed and agility
represent the layer's ability to quickly
scan and process data, using filters to
extract features like a cheetah uses its
speed to catch prey.

From “Dive into Deep Learning”

Existing layers - Convolution Layers
torch.nn.Conv1d Applies a 1D convolution over an input signal composed of several input planes.

torch.nn.Conv2d Applies a 2D convolution over an input signal composed of several input planes.

torch.nn.Conv3d Applies a 3D convolution over an input signal composed of several input planes.

torch.nn.ConvTranspose1d Applies a 1D transposed convolution operator over an input image composed of several input planes.
torch.nn.ConvTranspose2d Applies a 2D transposed convolution operator over an input image composed of several input planes.
torch.nn.ConvTranspose3d Applies a 3D transposed convolution operator over an input image composed of several input planes.
torch.nn.LazyConv1d A torch.nn.Conv1d module with lazy initialization of the in_channels argument of the Conv1d that is inferred from the input.size(1).

torch.nn.LazyConv2d A torch.nn.Conv2d module with lazy initialization of the in_channels argument of the Conv2d that is inferred from the input.size(1).

torch.nn.LazyConv3d A torch.nn.Conv3d module with lazy initialization of the in_channels argument of the Conv3d that is inferred from the input.size(1).

torch.nn.LazyConvTranspose1d A torch.nn.ConvTranspose1d module with lazy initialization of the in_channels argument of the ConvTranspose1d that is inferred
from the input.size(1).

torch.nn.LazyConvTranspose2d A torch.nn.ConvTranspose2d module with lazy initialization of the in_channels argument of the ConvTranspose2d that is inferred
from the input.size(1).

torch.nn.LazyConvTranspose3d A torch.nn.ConvTranspose3d module with lazy initialization of the in_channels argument of the ConvTranspose3d that is inferred
from the input.size(1).

torch.nn.Unfold Extracts sliding local blocks from a batched input tensor.
torch.nn.Fold Combines an array of sliding local blocks into a large containing tensor.

I use those for my spiking
convolution networks

= relevant

https://pytorch.org/docs/stable/nn.html#convolution-layers
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html#torch.nn.Conv3d

Pooling Layers - The Koi Pond
The Pooling Layer is represented by a
serene koi pond, where fish swim
together in harmony. Just as the fish
reduce the complexity of the water's
surface by swimming in schools, the
Pooling Layer reduces the spatial
dimensions of the input data, helping
the model to focus on the most
important features.

From “Dive into Deep Learning”

Existing layers - Pooling layers
torch.nn.MaxPool1d Applies a 1D max pooling over an input signal composed of several input planes.

torch.nn.MaxPool2d Applies a 2D max pooling over an input signal composed of several input planes.

torch.nn.MaxPool3d Applies a 3D max pooling over an input signal composed of several input planes.

torch.nn.MaxUnpool1d Computes a partial inverse of MaxPool1d.
torch.nn.MaxUnpool2d Computes a partial inverse of MaxPool2d.
torch.nn.MaxUnpool3d Computes a partial inverse of MaxPool3d.

torch.nn.AvgPool1d Applies a 1D average pooling over an input signal composed of several input planes.

torch.nn.AvgPool2d Applies a 2D average pooling over an input signal composed of several input planes.

torch.nn.AvgPool3d Applies a 3D average pooling over an input signal composed of several input planes.

torch.nn.FractionalMaxPool2d Applies a 2D fractional max pooling over an input signal composed of several input planes.
torch.nn.FractionalMaxPool3d Applies a 3D fractional max pooling over an input signal composed of several input planes.
torch.nn.LPPool1d Applies a 1D power-average pooling over an input signal composed of several input planes.
torch.nn.LPPool2d Applies a 2D power-average pooling over an input signal composed of several input planes.
torch.nn.AdaptiveMaxPool1d Applies a 1D adaptive max pooling over an input signal composed of several input planes.
torch.nn.AdaptiveMaxPool2d Applies a 2D adaptive max pooling over an input signal composed of several input planes.
torch.nn.AdaptiveMaxPool3d Applies a 3D adaptive max pooling over an input signal composed of several input planes.
torch.nn.AdaptiveAvgPool1d Applies a 1D adaptive average pooling over an input signal composed of several input planes.
torch.nn.AdaptiveAvgPool2d Applies a 2D adaptive average pooling over an input signal composed of several input planes.
torch.nn.AdaptiveAvgPool3d Applies a 3D adaptive average pooling over an input signal composed of several input planes.

= relevant

https://pytorch.org/docs/stable/nn.html#pooling-layers
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.html#torch.nn.MaxPool1d
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool3d.html#torch.nn.MaxPool3d
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool1d.html#torch.nn.AvgPool1d
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool3d.html#torch.nn.AvgPool3d

Padding Layers - The Framed Artwork
The Padding Layer is represented by a
beautifully framed artwork, where a
delicate border surrounds a stunning
painting. Just as the frame enhances
and protects the artwork, the Padding
Layer adds zeros to the input data,
helping to preserve important
information at the borders and
improving model performance.

Existing layers - Padding Layers
torch.nn.ReflectionPad1d Pads the input tensor using the reflection of the input boundary.
torch.nn.ReflectionPad2d Pads the input tensor using the reflection of the input boundary.
torch.nn.ReflectionPad3d Pads the input tensor using the reflection of the input boundary.
torch.nn.ReplicationPad1d Pads the input tensor using replication of the input boundary.
torch.nn.ReplicationPad2d Pads the input tensor using replication of the input boundary.
torch.nn.ReplicationPad3d Pads the input tensor using replication of the input boundary.
torch.nn.ZeroPad1d Pads the input tensor boundaries with zero.
torch.nn.ZeroPad2d Pads the input tensor boundaries with zero.
torch.nn.ZeroPad3d Pads the input tensor boundaries with zero.
torch.nn.ConstantPad1d Pads the input tensor boundaries with a constant value.
torch.nn.ConstantPad2d Pads the input tensor boundaries with a constant value.
torch.nn.ConstantPad3d Pads the input tensor boundaries with a constant value.

= relevant

https://pytorch.org/docs/stable/nn.html#padding-layers

Activation Function Layers - The Butterfly
Garden
The final exhibit features a beautiful
butterfly garden, representing the
various activation functions like ReLU,
Sigmoid, and Tanh. Just as different
butterflies have unique characteristics
and behaviors, each activation function
introduces non-linearity into the model
in its own way, allowing it to learn
complex patterns.

From “Dive into Deep Learning”

From “Dive into Deep Learning”

From “Dive into Deep Learning”

Existing layers - Non-linear Activations
(weighted sum, nonlinearity)

torch.nn.ELU Applies the Exponential Linear Unit (ELU) function, element-wise, as described in the paper: Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs).

torch.nn.Hardshrink Applies the Hard Shrinkage (Hardshrink) function element-wise.
torch.nn.Hardsigmoid Applies the Hardsigmoid function element-wise.
torch.nn.Hardtanh Applies the HardTanh function element-wise.
torch.nn.Hardswish Applies the Hardswish function, element-wise, as described in the paper: Searching for MobileNetV3.
torch.nn.LeakyReLU Applies the element-wise function:

torch.nn.LogSigmoid Applies the element-wise function:
torch.nn.MultiheadAttention Allows the model to jointly attend to information from different representation subspaces as described in the

paper: Attention Is All You Need.
torch.nn.PReLU Applies the element-wise function:
torch.nn.ReLU Applies the rectified linear unit function element-wise:

torch.nn.ReLU6 Applies the element-wise function:
torch.nn.RReLU Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper:
torch.nn.SELU Applied element-wise…
torch.nn.CELU Applies the element-wise function…
torch.nn.GELU Applies the Gaussian Error Linear Units function:

= relevant

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html#torch.nn.LeakyReLU
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU

Existing layers - Non-linear Activations
(weighted sum, nonlinearity)

torch.nn.Sigmoid Applies the element-wise function:…

torch.nn.SiLU Applies the Sigmoid Linear Unit (SiLU) function, element-wise.

torch.nn.Mish Applies the Mish function, element-wise.

torch.nn.Softplus Applies the Softplus function

torch.nn.Softshrink Applies the soft shrinkage function elementwise:

torch.nn.Softsign Applies the element-wise function:…

torch.nn.Tanh Applies the Hyperbolic Tangent (Tanh) function element-wise.

torch.nn.Tanhshrink Applies the element-wise function:

torch.nn.Threshold Thresholds each element of the input Tensor.

torch.nn.GLU Applies the gated linear unit function

= relevant

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html#torch.nn.Sigmoid
https://pytorch.org/docs/stable/generated/torch.nn.Tanh.html#torch.nn.Tanh

Batch Normalization Layer - The Penguin
The Batch Normalization Layer is
depicted as a penguin, which thrives in
groups and follows norms. The layer
normalizes the input data for each mini-
batch, ensuring that all the inputs follow
the same distribution and improving
model stability.

Existing layers - Normalization Layers
torch.nn.BatchNorm1d Applies Batch Normalization over a 2D or 3D input as described in the paper Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift .

torch.nn.BatchNorm2d Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

torch.nn.BatchNorm3d Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

torch.nn.LazyBatchNorm1d A torch.nn.BatchNorm1d module with lazy initialization of the num_features argument of the BatchNorm1d that is inferred from the
input.size(1).

torch.nn.LazyBatchNorm2d A torch.nn.BatchNorm2d module with lazy initialization of the num_features argument of the BatchNorm2d that is inferred from the
input.size(1).

torch.nn.LazyBatchNorm3d A torch.nn.BatchNorm3d module with lazy initialization of the num_features argument of the BatchNorm3d that is inferred from the
input.size(1).

torch.nn.GroupNorm Applies Group Normalization over a mini-batch of inputs as described in the paper Group Normalization
torch.nn.SyncBatchNorm Applies Batch Normalization over a N-Dimensional input (a mini-batch of [N-2]D inputs with additional channel dimension) as

described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .
torch.nn.InstanceNorm1d Applies Instance Normalization over a 2D (unbatched) or 3D (batched) input as described in the paper Instance Normalization: The

Missing Ingredient for Fast Stylization.
torch.nn.InstanceNorm2d Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper

Instance Normalization: The Missing Ingredient for Fast Stylization.
torch.nn.InstanceNorm3d Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper

Instance Normalization: The Missing Ingredient for Fast Stylization.
torch.nn.LazyInstanceNorm1d A torch.nn.InstanceNorm1d module with lazy initialization of the num_features argument of the InstanceNorm1d that is inferred from

the input.size(1).
torch.nn.LazyInstanceNorm2d A torch.nn.InstanceNorm2d module with lazy initialization of the num_features argument of the InstanceNorm2d that is inferred from

the input.size(1).
torch.nn.LazyInstanceNorm3d A torch.nn.InstanceNorm3d module with lazy initialization of the num_features argument of the InstanceNorm3d that is inferred from

the input.size(1).

torch.nn.LayerNorm Applies Layer Normalization over a mini-batch of inputs as described in the paper Layer Normalization

torch.nn.LocalResponseNorm Applies local response normalization over an input signal composed of several input planes, where channels occupy the second
dimension.

= relevant

https://pytorch.org/docs/stable/nn.html#non-linear-activations-other
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm3d.html#torch.nn.BatchNorm3d
https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

Recurrent Neural Network (RNN) Layer -
The Elephant
The RNN Layer is depicted as an
elephant, with its excellent memory
and ability to recall past experiences.
Just as an elephant never forgets, the
RNN Layer uses feedback connections
to keep track of information over time,
making it perfect for sequential data.

From “Dive into Deep Learning”

Long Short-Term Memory (LSTM) Layer -
The Tortoise
The LSTM Layer is represented by a
tortoise, symbolizing its ability to carry
information over long distances and
remember it for extended periods. The
tortoise's shell protects it from the
outside world, just as the LSTM Layer's
memory cells and gates protect the
information from vanishing.

From “Dive into Deep Learning”

Existing layers - Recurrent Layers

torch.nn.RNNBase Base class for RNN modules (RNN, LSTM, GRU).

torch.nn.RNN Applies a multi-layer Elman

torch.nn.LSTM Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.

torch.nn.GRU Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

torch.nn.RNNCell An Elman RNN cell with tanh or ReLU non-linearity.

torch.nn.LSTMCell A long short-term memory (LSTM) cell.

torch.nn.GRUCell A gated recurrent unit (GRU) cell

RNN, GRU, LSTM and such lives here.
If you don’t know what this means then you don’t need them… It is for modelling time series.

= relevant

https://pytorch.org/docs/stable/nn.html#recurrent-layers
https://pytorch.org/docs/stable/generated/torch.nn.RNN.html#torch.nn.RNN
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html#torch.nn.GRU

Transformer Layer - The Parrot
The Transformer Layer is depicted as
a colorful parrot, known for its ability to
mimic and understand context. The
parrot's self-attention mechanisms
allow it to weigh the importance of
different input elements, just like a
parrot weighs the importance of
different sounds and words.

From “Dive into Deep Learning”

Existing layers - Transformer Layers

torch.nn.Transformer A transformer model.

torch.nn.TransformerEncoder TransformerEncoder is a stack of N encoder layers.

torch.nn.TransformerDecoder TransformerDecoder is a stack of N decoder layers

torch.nn.TransformerEncoderLayer TransformerEncoderLayer is made up of self-attn and feedforward
network.

torch.nn.TransformerDecoderLayer TransformerDecoderLayer is made up of self-attn, multi-head-attn and
feedforward network.

If you do research on transformers or want to use them then you will write them yourself.

https://pytorch.org/docs/stable/nn.html#transformer-layers

Dropout Layer - The Chameleon
The Dropout Layer is represented by a
chameleon, which can change its
appearance to adapt to its
surroundings. The Dropout Layer
randomly sets a fraction of the output
elements to zero during training,
allowing the model to adapt and
prevent overfitting.

From “Dive into Deep Learning”

Existing layers - Dropout Layers
torch.nn.Dropout During training, randomly zeroes some of the elements of the input tensor

with probability p using samples from a Bernoulli distribution.
torch.nn.Dropout1d Randomly zero out entire channels (a channel is a 1D feature map).
torch.nn.Dropout2d Randomly zero out entire channels (a channel is a 2D feature map).
torch.nn.Dropout3d Randomly zero out entire channels (a channel is a 3D feature map)
torch.nn.AlphaDropout Applies Alpha Dropout over the input.
torch.nn.FeatureAlphaDropout Randomly masks out entire channels (a channel is a feature map)

= relevant

https://pytorch.org/docs/stable/nn.html#dropout-layers
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html#torch.nn.Dropout
https://pytorch.org/docs/stable/generated/torch.nn.Dropout1d.html#torch.nn.Dropout1d
https://pytorch.org/docs/stable/generated/torch.nn.Dropout2d.html#torch.nn.Dropout2d
https://pytorch.org/docs/stable/generated/torch.nn.Dropout3d.html#torch.nn.Dropout3d

Sparse Layers - The Desert Landscape
The Sparse Layer is represented by a
vast and arid desert landscape, where
cacti and succulents thrive in the harsh
environment. Just as these plants have
adapted to survive with limited
resources, the Sparse Layer helps the
model to focus on the most important
features of the input data, eliminating
unnecessary connections and
improving efficiency.

Existing layers - Sparse Layers
torch.nn.Embedding A simple lookup table that stores embeddings of a fixed dictionary and size.

torch.nn.EmbeddingBag Computes sums or means of ‘bags’ of embeddings, without instantiating the
intermediate embeddings.

https://pytorch.org/docs/stable/nn.html#sparse-layers

Distance Functions - The Map Room
The Distance Function is represented
by a map room, where cartographers
measure distances between different
locations. Just as the cartographers use
various distance metrics to calculate
the shortest path, the Distance Function
measures the similarity or dissimilarity
between input data points, helping the
model to make predictions and classify
examples.

Existing layers - Distance Functions

torch.nn.CosineSimilarity Returns cosine similarity

torch.nn.PairwiseDistance Computes the pairwise distance between input vectors, or between
columns of input matrices.

https://pytorch.org/docs/stable/nn.html#distance-functions

Loss Functions - The Target Practice
Range
The Loss Function is represented by a
target practice range, where archers
aim to hit the bullseye. Just as the
archers strive to minimize their distance
from the target, the Loss Function
measures the difference between the
model's predictions and the actual
labels, helping the model to learn and
improve.

Existing layers - Loss Functions
torch.nn.L1Loss Creates a criterion that measures the mean absolute error (MAE) between each element in the input

torch.nn.MSELoss Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input

torch.nn.CrossEntropyLoss This criterion computes the cross entropy loss between input logits and target.

torch.nn.CTCLoss The Connectionist Temporal Classification loss.
torch.nn.NLLLoss The negative log likelihood loss.
torch.nn.PoissonNLLLoss Negative log likelihood loss with Poisson distribution of target.
torch.nn.GaussianNLLLoss Gaussian negative log likelihood loss.
torch.nn.KLDivLoss The Kullback-Leibler divergence loss.
torch.nn.BCELoss Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities:
torch.nn.BCEWithLogitsLoss This loss combines a Sigmoid layer and the BCELoss in one single class.
torch.nn.MarginRankingLoss Creates a criterion that measures the loss
torch.nn.HingeEmbeddingLoss Measures the loss given an input tensor
torch.nn.MultiLabelMarginLoss Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss)
torch.nn.HuberLoss Creates a criterion that uses a squared term if the absolute element-wise error falls below delta and a delta-scaled L1 term

otherwise.
torch.nn.SmoothL1Loss Creates a criterion that uses a squared term if the absolute element-wise error falls below beta and an L1 term otherwise.

torch.nn.SoftMarginLoss Creates a criterion that optimizes a two-class classification logistic loss
torch.nn.MultiLabelSoftMarginLoss Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy
torch.nn.CosineEmbeddingLoss Creates a criterion that measures the loss given input tensors and a Tensor label
torch.nn.MultiMarginLoss Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss)
torch.nn.TripletMarginLoss Creates a criterion that measures the triplet loss given an input tensors
torch.nn.TripletMarginWithDistanceLoss Creates a criterion that measures the triplet loss given input tensors

= relevant

https://pytorch.org/docs/stable/nn.html#loss-functions
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss

Existing layers - Utilities
In this category you will find a lot of utility functions…
A lot!

torch.nn.Flatten Flattens a contiguous range of dims into a tensor.

torch.nn.Unflatten Unflattens a tensor dim expanding it to a desired shape.

Quantization
The probability that you need it is low but I listed it here because we are working on it.
And if I need to find the link…

I will skip the following layer types (because you will not care about them):
Sparse Layers
Vision Layers
Shuffle Layers
DataParallel Layers (multi-GPU, distributed)

= relevant

https://pytorch.org/docs/stable/nn.html#module-torch.nn.utils
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html#torch.nn.Flatten
https://pytorch.org/docs/stable/generated/torch.nn.Unflatten.html#torch.nn.Unflatten
https://pytorch.org/docs/stable/nn.html#quantized-functions
https://pytorch.org/docs/stable/quantization.html#quantization-doc
https://pytorch.org/docs/stable/nn.html#sparse-layers
https://pytorch.org/docs/stable/nn.html#vision-layers
https://pytorch.org/docs/stable/nn.html#vision-layers
https://pytorch.org/docs/stable/nn.html#dataparallel-layers-multi-gpu-distributed

Leaving the PyTorch zoo

It was fun exploring the world of PyTorch
with you! As we leave the zoo, I hope you
had a wild time learning about the different
stops, from torch.nn.Module to various layers
and modules.
Thanks for chatting with me! If you have
any more questions or want to explore more
topics, feel free to ask me anytime. Have a
great day!

Our local AI says:

Not so fast... Here the story really starts for us!

