pytorch_sequence_tools/SequentialSplit.py

170 lines
5.6 KiB
Python
Raw Permalink Normal View History

2024-09-22 16:02:53 +02:00
import torch
from typing import Callable
class SequentialSplit(torch.nn.Module):
"""
A PyTorch module that splits the processing path of a input tensor
and processes it through multiple torch.nn.Sequential segments,
then combines the outputs using a specified methods.
This module allows for creating split paths within a `torch.nn.Sequential`
model, making it possible to implement architectures with skip connections
or parallel paths without abandoning the sequential model structure.
Attributes:
segments (torch.nn.Sequential[torch.nn.Sequential]): A list of sequential modules to
process the input tensor.
combine_func (Callable | None): A function to combine the outputs
from the segments.
dim (int | None): The dimension along which to concatenate
the outputs if `combine_func` is `torch.cat`.
Args:
segments (torch.nn.Sequential[torch.nn.Sequential]): A torch.nn.Sequential
with a list of sequential modules to process the input tensor.
combine (str, optional): The method to combine the outputs.
"cat" for concatenation (default), "sum" for a summation,
or "func" to use a custom combine function.
dim (int | None, optional): The dimension along which to
concatenate the outputs if `combine` is "cat".
Defaults to 1.
combine_func (Callable | None, optional): A custom function
to combine the outputs if `combine` is "func".
Defaults to None.
Example:
A simple example for the `SequentialSplit` module with two sub-torch.nn.Sequential:
----- segment_a -----
main_Sequential ----| |---- main_Sequential
----- segment_b -----
segments = [segment_a, segment_b]
y_split = SequentialSplit(segments)
result = y_split(input_tensor)
Methods:
forward(input: torch.Tensor) -> torch.Tensor:
Processes the input tensor through the segments and
combines the results.
"""
segments: torch.nn.Sequential
combine_func: Callable
dim: int | None
def __init__(
self,
segments: torch.nn.Sequential,
combine: str = "cat", # "cat", "sum", "func",
dim: int | None = 1,
combine_func: Callable | None = None,
):
super().__init__()
self.segments = segments
self.dim = dim
self.combine = combine
if combine.upper() == "CAT":
self.combine_func = torch.cat
elif combine.upper() == "SUM":
self.combine_func = self.sum
self.dim = None
else:
assert combine_func is not None
self.combine_func = combine_func
def sum(self, input: list[torch.Tensor]) -> torch.Tensor | None:
if len(input) == 0:
return None
if len(input) == 1:
return input[0]
output: torch.Tensor = input[0]
for i in range(1, len(input)):
output = output + input[i]
return output
def forward(self, input: torch.Tensor) -> torch.Tensor:
results: list[torch.Tensor] = []
for segment in self.segments:
results.append(segment(input))
if self.dim is None:
return self.combine_func(results)
else:
return self.combine_func(results, dim=self.dim)
def extra_repr(self) -> str:
return self.combine
if __name__ == "__main__":
print("Example CAT")
strain_a = torch.nn.Sequential(torch.nn.Identity())
strain_b = torch.nn.Sequential(torch.nn.Identity())
strain_c = torch.nn.Sequential(torch.nn.Identity())
test_cat = SequentialSplit(
torch.nn.Sequential(strain_a, strain_b, strain_c), combine="cat", dim=2
)
print(test_cat)
input = torch.ones((10, 11, 12, 13))
output = test_cat(input)
print(input.shape)
print(output.shape)
print(input[0, 0, 0, 0])
print(output[0, 0, 0, 0])
print()
print("Example SUM")
strain_a = torch.nn.Sequential(torch.nn.Identity())
strain_b = torch.nn.Sequential(torch.nn.Identity())
strain_c = torch.nn.Sequential(torch.nn.Identity())
test_sum = SequentialSplit(
torch.nn.Sequential(strain_a, strain_b, strain_c), combine="sum", dim=2
)
print(test_sum)
input = torch.ones((10, 11, 12, 13))
output = test_sum(input)
print(input.shape)
print(output.shape)
print(input[0, 0, 0, 0])
print(output[0, 0, 0, 0])
print()
print("Example Labeling")
strain_a = torch.nn.Sequential()
strain_a.add_module("Label for first strain", torch.nn.Identity())
strain_b = torch.nn.Sequential()
strain_b.add_module("Label for second strain", torch.nn.Identity())
strain_c = torch.nn.Sequential()
strain_c.add_module("Label for third strain", torch.nn.Identity())
test_label = SequentialSplit(torch.nn.Sequential(strain_a, strain_b, strain_c))
print(test_label)
print()
print("Example Get Parameter")
input = torch.ones((10, 11, 12, 13))
strain_a = torch.nn.Sequential()
strain_a.add_module("Identity", torch.nn.Identity())
strain_b = torch.nn.Sequential()
strain_b.add_module(
"Conv2d",
torch.nn.Conv2d(
in_channels=input.shape[1],
out_channels=input.shape[1],
kernel_size=(1, 1),
),
)
test_parameter = SequentialSplit(torch.nn.Sequential(strain_a, strain_b))
print(test_parameter)
for name, param in test_parameter.named_parameters():
print(f"Parameter name: {name}, Shape: {param.shape}")