Add files via upload

This commit is contained in:
David Rotermund 2024-09-22 16:02:53 +02:00 committed by GitHub
parent 62ab157c63
commit dea4d763ee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 1219 additions and 0 deletions

41
Functional2Layer.py Normal file
View file

@ -0,0 +1,41 @@
import torch
from typing import Callable, Any
class Functional2Layer(torch.nn.Module):
def __init__(
self, func: Callable[..., torch.Tensor], *args: Any, **kwargs: Any
) -> None:
super().__init__()
self.func = func
self.args = args
self.kwargs = kwargs
def forward(self, input: torch.Tensor) -> torch.Tensor:
return self.func(input, *self.args, **self.kwargs)
def extra_repr(self) -> str:
func_name = (
self.func.__name__ if hasattr(self.func, "__name__") else str(self.func)
)
args_repr = ", ".join(map(repr, self.args))
kwargs_repr = ", ".join(f"{k}={v!r}" for k, v in self.kwargs.items())
return f"func={func_name}, args=({args_repr}), kwargs={{{kwargs_repr}}}"
if __name__ == "__main__":
print("Permute Example")
test_layer_permute = Functional2Layer(func=torch.permute, dims=(0, 2, 3, 1))
input = torch.zeros((10, 11, 12, 13))
output = test_layer_permute(input)
print(input.shape)
print(output.shape)
print(test_layer_permute)
print()
print("Clamp Example")
test_layer_clamp = Functional2Layer(func=torch.clamp, min=5, max=100)
output = test_layer_permute(input)
print(output[0, 0, 0, 0])
print(test_layer_clamp)

169
SequentialSplit.py Normal file
View file

@ -0,0 +1,169 @@
import torch
from typing import Callable
class SequentialSplit(torch.nn.Module):
"""
A PyTorch module that splits the processing path of a input tensor
and processes it through multiple torch.nn.Sequential segments,
then combines the outputs using a specified methods.
This module allows for creating split paths within a `torch.nn.Sequential`
model, making it possible to implement architectures with skip connections
or parallel paths without abandoning the sequential model structure.
Attributes:
segments (torch.nn.Sequential[torch.nn.Sequential]): A list of sequential modules to
process the input tensor.
combine_func (Callable | None): A function to combine the outputs
from the segments.
dim (int | None): The dimension along which to concatenate
the outputs if `combine_func` is `torch.cat`.
Args:
segments (torch.nn.Sequential[torch.nn.Sequential]): A torch.nn.Sequential
with a list of sequential modules to process the input tensor.
combine (str, optional): The method to combine the outputs.
"cat" for concatenation (default), "sum" for a summation,
or "func" to use a custom combine function.
dim (int | None, optional): The dimension along which to
concatenate the outputs if `combine` is "cat".
Defaults to 1.
combine_func (Callable | None, optional): A custom function
to combine the outputs if `combine` is "func".
Defaults to None.
Example:
A simple example for the `SequentialSplit` module with two sub-torch.nn.Sequential:
----- segment_a -----
main_Sequential ----| |---- main_Sequential
----- segment_b -----
segments = [segment_a, segment_b]
y_split = SequentialSplit(segments)
result = y_split(input_tensor)
Methods:
forward(input: torch.Tensor) -> torch.Tensor:
Processes the input tensor through the segments and
combines the results.
"""
segments: torch.nn.Sequential
combine_func: Callable
dim: int | None
def __init__(
self,
segments: torch.nn.Sequential,
combine: str = "cat", # "cat", "sum", "func",
dim: int | None = 1,
combine_func: Callable | None = None,
):
super().__init__()
self.segments = segments
self.dim = dim
self.combine = combine
if combine.upper() == "CAT":
self.combine_func = torch.cat
elif combine.upper() == "SUM":
self.combine_func = self.sum
self.dim = None
else:
assert combine_func is not None
self.combine_func = combine_func
def sum(self, input: list[torch.Tensor]) -> torch.Tensor | None:
if len(input) == 0:
return None
if len(input) == 1:
return input[0]
output: torch.Tensor = input[0]
for i in range(1, len(input)):
output = output + input[i]
return output
def forward(self, input: torch.Tensor) -> torch.Tensor:
results: list[torch.Tensor] = []
for segment in self.segments:
results.append(segment(input))
if self.dim is None:
return self.combine_func(results)
else:
return self.combine_func(results, dim=self.dim)
def extra_repr(self) -> str:
return self.combine
if __name__ == "__main__":
print("Example CAT")
strain_a = torch.nn.Sequential(torch.nn.Identity())
strain_b = torch.nn.Sequential(torch.nn.Identity())
strain_c = torch.nn.Sequential(torch.nn.Identity())
test_cat = SequentialSplit(
torch.nn.Sequential(strain_a, strain_b, strain_c), combine="cat", dim=2
)
print(test_cat)
input = torch.ones((10, 11, 12, 13))
output = test_cat(input)
print(input.shape)
print(output.shape)
print(input[0, 0, 0, 0])
print(output[0, 0, 0, 0])
print()
print("Example SUM")
strain_a = torch.nn.Sequential(torch.nn.Identity())
strain_b = torch.nn.Sequential(torch.nn.Identity())
strain_c = torch.nn.Sequential(torch.nn.Identity())
test_sum = SequentialSplit(
torch.nn.Sequential(strain_a, strain_b, strain_c), combine="sum", dim=2
)
print(test_sum)
input = torch.ones((10, 11, 12, 13))
output = test_sum(input)
print(input.shape)
print(output.shape)
print(input[0, 0, 0, 0])
print(output[0, 0, 0, 0])
print()
print("Example Labeling")
strain_a = torch.nn.Sequential()
strain_a.add_module("Label for first strain", torch.nn.Identity())
strain_b = torch.nn.Sequential()
strain_b.add_module("Label for second strain", torch.nn.Identity())
strain_c = torch.nn.Sequential()
strain_c.add_module("Label for third strain", torch.nn.Identity())
test_label = SequentialSplit(torch.nn.Sequential(strain_a, strain_b, strain_c))
print(test_label)
print()
print("Example Get Parameter")
input = torch.ones((10, 11, 12, 13))
strain_a = torch.nn.Sequential()
strain_a.add_module("Identity", torch.nn.Identity())
strain_b = torch.nn.Sequential()
strain_b.add_module(
"Conv2d",
torch.nn.Conv2d(
in_channels=input.shape[1],
out_channels=input.shape[1],
kernel_size=(1, 1),
),
)
test_parameter = SequentialSplit(torch.nn.Sequential(strain_a, strain_b))
print(test_parameter)
for name, param in test_parameter.named_parameters():
print(f"Parameter name: {name}, Shape: {param.shape}")

41
__init__.py Normal file
View file

@ -0,0 +1,41 @@
from . import parametrizations, rnn, stateless
from .clip_grad import clip_grad_norm, clip_grad_norm_, clip_grad_value_
from .convert_parameters import parameters_to_vector, vector_to_parameters
from .fusion import (
fuse_conv_bn_eval,
fuse_conv_bn_weights,
fuse_linear_bn_eval,
fuse_linear_bn_weights,
)
from .init import skip_init
from .memory_format import (
convert_conv2d_weight_memory_format,
convert_conv3d_weight_memory_format,
)
from .spectral_norm import remove_spectral_norm, spectral_norm
from .weight_norm import remove_weight_norm, weight_norm
from .Functional2Layer import Functional2Layer
__all__ = [
"clip_grad_norm",
"clip_grad_norm_",
"clip_grad_value_",
"convert_conv2d_weight_memory_format",
"convert_conv3d_weight_memory_format",
"fuse_conv_bn_eval",
"fuse_conv_bn_weights",
"fuse_linear_bn_eval",
"fuse_linear_bn_weights",
"parameters_to_vector",
"parametrizations",
"remove_spectral_norm",
"remove_weight_norm",
"rnn",
"skip_init",
"spectral_norm",
"stateless",
"vector_to_parameters",
"weight_norm",
"Functional2Layer",
]

968
container.py Normal file
View file

@ -0,0 +1,968 @@
# mypy: allow-untyped-defs
import operator
from collections import abc as container_abcs, OrderedDict
from itertools import chain, islice
from typing import (
Any,
Dict,
Iterable,
Iterator,
Mapping,
Optional,
overload,
Tuple,
TypeVar,
Union,
)
from typing_extensions import deprecated, Self
import torch
from torch._jit_internal import _copy_to_script_wrapper
from torch.nn.parameter import Parameter
from .module import Module
from .SequentialSplit import SequentialSplit
__all__ = [
"Container",
"Sequential",
"ModuleList",
"ModuleDict",
"ParameterList",
"ParameterDict",
"SequentialSplit",
]
T = TypeVar("T", bound=Module)
# Copied from torch.nn.modules.module, required for a custom __repr__ for ModuleList
def _addindent(s_, numSpaces):
s = s_.split("\n")
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(numSpaces * " ") + line for line in s]
s = "\n".join(s)
s = first + "\n" + s
return s
@deprecated(
"`nn.Container` is deprecated. "
"All of it's functionality is now implemented in `nn.Module`. Subclass that instead.",
category=FutureWarning,
)
class Container(Module):
def __init__(self, **kwargs: Any) -> None:
super().__init__()
for key, value in kwargs.items():
self.add_module(key, value)
class Sequential(Module):
r"""A sequential container.
Modules will be added to it in the order they are passed in the
constructor. Alternatively, an ``OrderedDict`` of modules can be
passed in. The ``forward()`` method of ``Sequential`` accepts any
input and forwards it to the first module it contains. It then
"chains" outputs to inputs sequentially for each subsequent module,
finally returning the output of the last module.
The value a ``Sequential`` provides over manually calling a sequence
of modules is that it allows treating the whole container as a
single module, such that performing a transformation on the
``Sequential`` applies to each of the modules it stores (which are
each a registered submodule of the ``Sequential``).
What's the difference between a ``Sequential`` and a
:class:`torch.nn.ModuleList`? A ``ModuleList`` is exactly what it
sounds like--a list for storing ``Module`` s! On the other hand,
the layers in a ``Sequential`` are connected in a cascading way.
Example::
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
"""
_modules: Dict[str, Module] # type: ignore[assignment]
@overload
def __init__(self, *args: Module) -> None:
...
@overload
def __init__(self, arg: "OrderedDict[str, Module]") -> None:
...
def __init__(self, *args):
super().__init__()
if len(args) == 1 and isinstance(args[0], OrderedDict):
for key, module in args[0].items():
self.add_module(key, module)
else:
for idx, module in enumerate(args):
self.add_module(str(idx), module)
def _get_item_by_idx(self, iterator, idx) -> T: # type: ignore[misc, type-var]
"""Get the idx-th item of the iterator."""
size = len(self)
idx = operator.index(idx)
if not -size <= idx < size:
raise IndexError(f"index {idx} is out of range")
idx %= size
return next(islice(iterator, idx, None))
@_copy_to_script_wrapper
def __getitem__(self, idx: Union[slice, int]) -> Union["Sequential", T]:
if isinstance(idx, slice):
return self.__class__(OrderedDict(list(self._modules.items())[idx]))
else:
return self._get_item_by_idx(self._modules.values(), idx)
def __setitem__(self, idx: int, module: Module) -> None:
key: str = self._get_item_by_idx(self._modules.keys(), idx)
return setattr(self, key, module)
def __delitem__(self, idx: Union[slice, int]) -> None:
if isinstance(idx, slice):
for key in list(self._modules.keys())[idx]:
delattr(self, key)
else:
key = self._get_item_by_idx(self._modules.keys(), idx)
delattr(self, key)
# To preserve numbering
str_indices = [str(i) for i in range(len(self._modules))]
self._modules = OrderedDict(list(zip(str_indices, self._modules.values())))
@_copy_to_script_wrapper
def __len__(self) -> int:
return len(self._modules)
def __add__(self, other) -> "Sequential":
if isinstance(other, Sequential):
ret = Sequential()
for layer in self:
ret.append(layer)
for layer in other:
ret.append(layer)
return ret
else:
raise ValueError(
"add operator supports only objects "
f"of Sequential class, but {str(type(other))} is given."
)
def pop(self, key: Union[int, slice]) -> Module:
v = self[key]
del self[key]
return v
def __iadd__(self, other) -> Self:
if isinstance(other, Sequential):
offset = len(self)
for i, module in enumerate(other):
self.add_module(str(i + offset), module)
return self
else:
raise ValueError(
"add operator supports only objects "
f"of Sequential class, but {str(type(other))} is given."
)
def __mul__(self, other: int) -> "Sequential":
if not isinstance(other, int):
raise TypeError(
f"unsupported operand type(s) for *: {type(self)} and {type(other)}"
)
elif other <= 0:
raise ValueError(
f"Non-positive multiplication factor {other} for {type(self)}"
)
else:
combined = Sequential()
offset = 0
for _ in range(other):
for module in self:
combined.add_module(str(offset), module)
offset += 1
return combined
def __rmul__(self, other: int) -> "Sequential":
return self.__mul__(other)
def __imul__(self, other: int) -> Self:
if not isinstance(other, int):
raise TypeError(
f"unsupported operand type(s) for *: {type(self)} and {type(other)}"
)
elif other <= 0:
raise ValueError(
f"Non-positive multiplication factor {other} for {type(self)}"
)
else:
len_original = len(self)
offset = len(self)
for _ in range(other - 1):
for i in range(len_original):
self.add_module(str(i + offset), self._modules[str(i)])
offset += len_original
return self
@_copy_to_script_wrapper
def __dir__(self):
keys = super().__dir__()
keys = [key for key in keys if not key.isdigit()]
return keys
@_copy_to_script_wrapper
def __iter__(self) -> Iterator[Module]:
return iter(self._modules.values())
# NB: We can't really type check this function as the type of input
# may change dynamically (as is tested in
# TestScript.test_sequential_intermediary_types). Cannot annotate
# with Any as TorchScript expects a more precise type
def forward(self, input):
for module in self:
input = module(input)
return input
def append(self, module: Module) -> "Sequential":
r"""Append a given module to the end.
Args:
module (nn.Module): module to append
"""
self.add_module(str(len(self)), module)
return self
def insert(self, index: int, module: Module) -> "Sequential":
if not isinstance(module, Module):
raise AssertionError(f"module should be of type: {Module}")
n = len(self._modules)
if not (-n <= index <= n):
raise IndexError(f"Index out of range: {index}")
if index < 0:
index += n
for i in range(n, index, -1):
self._modules[str(i)] = self._modules[str(i - 1)]
self._modules[str(index)] = module
return self
def extend(self, sequential) -> "Sequential":
for layer in sequential:
self.append(layer)
return self
class ModuleList(Module):
r"""Holds submodules in a list.
:class:`~torch.nn.ModuleList` can be indexed like a regular Python list, but
modules it contains are properly registered, and will be visible by all
:class:`~torch.nn.Module` methods.
Args:
modules (iterable, optional): an iterable of modules to add
Example::
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])
def forward(self, x):
# ModuleList can act as an iterable, or be indexed using ints
for i, l in enumerate(self.linears):
x = self.linears[i // 2](x) + l(x)
return x
"""
_modules: Dict[str, Module] # type: ignore[assignment]
def __init__(self, modules: Optional[Iterable[Module]] = None) -> None:
super().__init__()
if modules is not None:
self += modules
def _get_abs_string_index(self, idx):
"""Get the absolute index for the list of modules."""
idx = operator.index(idx)
if not (-len(self) <= idx < len(self)):
raise IndexError(f"index {idx} is out of range")
if idx < 0:
idx += len(self)
return str(idx)
@_copy_to_script_wrapper
def __getitem__(self, idx: Union[int, slice]) -> Union[Module, "ModuleList"]:
if isinstance(idx, slice):
return self.__class__(list(self._modules.values())[idx])
else:
return self._modules[self._get_abs_string_index(idx)]
def __setitem__(self, idx: int, module: Module) -> None:
idx = self._get_abs_string_index(idx)
return setattr(self, str(idx), module)
def __delitem__(self, idx: Union[int, slice]) -> None:
if isinstance(idx, slice):
for k in range(len(self._modules))[idx]:
delattr(self, str(k))
else:
delattr(self, self._get_abs_string_index(idx))
# To preserve numbering, self._modules is being reconstructed with modules after deletion
str_indices = [str(i) for i in range(len(self._modules))]
self._modules = OrderedDict(list(zip(str_indices, self._modules.values())))
@_copy_to_script_wrapper
def __len__(self) -> int:
return len(self._modules)
@_copy_to_script_wrapper
def __iter__(self) -> Iterator[Module]:
return iter(self._modules.values())
def __iadd__(self, modules: Iterable[Module]) -> Self:
return self.extend(modules)
def __add__(self, other: Iterable[Module]) -> "ModuleList":
combined = ModuleList()
for i, module in enumerate(chain(self, other)):
combined.add_module(str(i), module)
return combined
def __repr__(self):
"""Return a custom repr for ModuleList that compresses repeated module representations."""
list_of_reprs = [repr(item) for item in self]
if len(list_of_reprs) == 0:
return self._get_name() + "()"
start_end_indices = [[0, 0]]
repeated_blocks = [list_of_reprs[0]]
for i, r in enumerate(list_of_reprs[1:], 1):
if r == repeated_blocks[-1]:
start_end_indices[-1][1] += 1
continue
start_end_indices.append([i, i])
repeated_blocks.append(r)
lines = []
main_str = self._get_name() + "("
for (start_id, end_id), b in zip(start_end_indices, repeated_blocks):
local_repr = f"({start_id}): {b}" # default repr
if start_id != end_id:
n = end_id - start_id + 1
local_repr = f"({start_id}-{end_id}): {n} x {b}"
local_repr = _addindent(local_repr, 2)
lines.append(local_repr)
main_str += "\n " + "\n ".join(lines) + "\n"
main_str += ")"
return main_str
@_copy_to_script_wrapper
def __dir__(self):
keys = super().__dir__()
keys = [key for key in keys if not key.isdigit()]
return keys
def insert(self, index: int, module: Module) -> None:
r"""Insert a given module before a given index in the list.
Args:
index (int): index to insert.
module (nn.Module): module to insert
"""
for i in range(len(self._modules), index, -1):
self._modules[str(i)] = self._modules[str(i - 1)]
self._modules[str(index)] = module
def append(self, module: Module) -> "ModuleList":
r"""Append a given module to the end of the list.
Args:
module (nn.Module): module to append
"""
self.add_module(str(len(self)), module)
return self
def pop(self, key: Union[int, slice]) -> Module:
v = self[key]
del self[key]
return v
def extend(self, modules: Iterable[Module]) -> Self:
r"""Append modules from a Python iterable to the end of the list.
Args:
modules (iterable): iterable of modules to append
"""
if not isinstance(modules, container_abcs.Iterable):
raise TypeError(
"ModuleList.extend should be called with an "
"iterable, but got " + type(modules).__name__
)
offset = len(self)
for i, module in enumerate(modules):
self.add_module(str(offset + i), module)
return self
# remove forward alltogether to fallback on Module's _forward_unimplemented
class ModuleDict(Module):
r"""Holds submodules in a dictionary.
:class:`~torch.nn.ModuleDict` can be indexed like a regular Python dictionary,
but modules it contains are properly registered, and will be visible by all
:class:`~torch.nn.Module` methods.
:class:`~torch.nn.ModuleDict` is an **ordered** dictionary that respects
* the order of insertion, and
* in :meth:`~torch.nn.ModuleDict.update`, the order of the merged
``OrderedDict``, ``dict`` (started from Python 3.6) or another
:class:`~torch.nn.ModuleDict` (the argument to
:meth:`~torch.nn.ModuleDict.update`).
Note that :meth:`~torch.nn.ModuleDict.update` with other unordered mapping
types (e.g., Python's plain ``dict`` before Python version 3.6) does not
preserve the order of the merged mapping.
Args:
modules (iterable, optional): a mapping (dictionary) of (string: module)
or an iterable of key-value pairs of type (string, module)
Example::
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.choices = nn.ModuleDict({
'conv': nn.Conv2d(10, 10, 3),
'pool': nn.MaxPool2d(3)
})
self.activations = nn.ModuleDict([
['lrelu', nn.LeakyReLU()],
['prelu', nn.PReLU()]
])
def forward(self, x, choice, act):
x = self.choices[choice](x)
x = self.activations[act](x)
return x
"""
_modules: Dict[str, Module] # type: ignore[assignment]
def __init__(self, modules: Optional[Mapping[str, Module]] = None) -> None:
super().__init__()
if modules is not None:
self.update(modules)
@_copy_to_script_wrapper
def __getitem__(self, key: str) -> Module:
return self._modules[key]
def __setitem__(self, key: str, module: Module) -> None:
self.add_module(key, module)
def __delitem__(self, key: str) -> None:
del self._modules[key]
@_copy_to_script_wrapper
def __len__(self) -> int:
return len(self._modules)
@_copy_to_script_wrapper
def __iter__(self) -> Iterator[str]:
return iter(self._modules)
@_copy_to_script_wrapper
def __contains__(self, key: str) -> bool:
return key in self._modules
def clear(self) -> None:
"""Remove all items from the ModuleDict."""
self._modules.clear()
def pop(self, key: str) -> Module:
r"""Remove key from the ModuleDict and return its module.
Args:
key (str): key to pop from the ModuleDict
"""
v = self[key]
del self[key]
return v
@_copy_to_script_wrapper
def keys(self) -> Iterable[str]:
r"""Return an iterable of the ModuleDict keys."""
return self._modules.keys()
@_copy_to_script_wrapper
def items(self) -> Iterable[Tuple[str, Module]]:
r"""Return an iterable of the ModuleDict key/value pairs."""
return self._modules.items()
@_copy_to_script_wrapper
def values(self) -> Iterable[Module]:
r"""Return an iterable of the ModuleDict values."""
return self._modules.values()
def update(self, modules: Mapping[str, Module]) -> None:
r"""Update the :class:`~torch.nn.ModuleDict` with key-value pairs from a mapping, overwriting existing keys.
.. note::
If :attr:`modules` is an ``OrderedDict``, a :class:`~torch.nn.ModuleDict`, or
an iterable of key-value pairs, the order of new elements in it is preserved.
Args:
modules (iterable): a mapping (dictionary) from string to :class:`~torch.nn.Module`,
or an iterable of key-value pairs of type (string, :class:`~torch.nn.Module`)
"""
if not isinstance(modules, container_abcs.Iterable):
raise TypeError(
"ModuleDict.update should be called with an "
"iterable of key/value pairs, but got " + type(modules).__name__
)
if isinstance(modules, (OrderedDict, ModuleDict, container_abcs.Mapping)):
for key, module in modules.items():
self[key] = module
else:
# modules here can be a list with two items
for j, m in enumerate(modules):
if not isinstance(m, container_abcs.Iterable):
raise TypeError(
"ModuleDict update sequence element "
"#" + str(j) + " should be Iterable; is" + type(m).__name__
)
if not len(m) == 2:
raise ValueError(
"ModuleDict update sequence element "
"#" + str(j) + " has length " + str(len(m)) + "; 2 is required"
)
# modules can be Mapping (what it's typed at), or a list: [(name1, module1), (name2, module2)]
# that's too cumbersome to type correctly with overloads, so we add an ignore here
self[m[0]] = m[1] # type: ignore[assignment]
# remove forward alltogether to fallback on Module's _forward_unimplemented
class ParameterList(Module):
r"""Holds parameters in a list.
:class:`~torch.nn.ParameterList` can be used like a regular Python
list, but Tensors that are :class:`~torch.nn.Parameter` are properly registered,
and will be visible by all :class:`~torch.nn.Module` methods.
Note that the constructor, assigning an element of the list, the
:meth:`~torch.nn.ParameterList.append` method and the :meth:`~torch.nn.ParameterList.extend`
method will convert any :class:`~torch.Tensor` into :class:`~torch.nn.Parameter`.
Args:
parameters (iterable, optional): an iterable of elements to add to the list.
Example::
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)])
def forward(self, x):
# ParameterList can act as an iterable, or be indexed using ints
for i, p in enumerate(self.params):
x = self.params[i // 2].mm(x) + p.mm(x)
return x
"""
def __init__(self, values: Optional[Iterable[Any]] = None) -> None:
super().__init__()
self._size = 0
if values is not None:
self += values
def _get_abs_string_index(self, idx):
"""Get the absolute index for the list of modules."""
idx = operator.index(idx)
if not (-len(self) <= idx < len(self)):
raise IndexError(f"index {idx} is out of range")
if idx < 0:
idx += len(self)
return str(idx)
@overload
def __getitem__(self, idx: int) -> Any:
...
@overload
def __getitem__(self: T, idx: slice) -> T:
...
def __getitem__(self, idx):
if isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
out = self.__class__()
for i in range(start, stop, step):
out.append(self[i])
return out
else:
idx = self._get_abs_string_index(idx)
return getattr(self, str(idx))
def __setitem__(self, idx: int, param: Any) -> None:
# Note that all other function that add an entry to the list part of
# the ParameterList end up here. So this is the only place where we need
# to wrap things into Parameter if needed.
# Objects added via setattr() are not in the list part and thus won't
# call into this function.
idx = self._get_abs_string_index(idx)
if isinstance(param, torch.Tensor) and not isinstance(param, Parameter):
param = Parameter(param)
return setattr(self, str(idx), param)
def __len__(self) -> int:
return self._size
def __iter__(self) -> Iterator[Any]:
return iter(self[i] for i in range(len(self)))
def __iadd__(self, parameters: Iterable[Any]) -> Self:
return self.extend(parameters)
def __dir__(self):
keys = super().__dir__()
keys = [key for key in keys if not key.isdigit()]
return keys
def append(self, value: Any) -> "ParameterList":
"""Append a given value at the end of the list.
Args:
value (Any): value to append
"""
new_idx = len(self)
self._size += 1
self[new_idx] = value
return self
def extend(self, values: Iterable[Any]) -> Self:
"""Append values from a Python iterable to the end of the list.
Args:
values (iterable): iterable of values to append
"""
# Tensor is an iterable but we never want to unpack it here
if not isinstance(values, container_abcs.Iterable) or isinstance(
values, torch.Tensor
):
raise TypeError(
"ParameterList.extend should be called with an "
"iterable, but got " + type(values).__name__
)
for value in values:
self.append(value)
return self
def extra_repr(self) -> str:
child_lines = []
for k, p in enumerate(self):
if isinstance(p, torch.Tensor):
size_str = "x".join(str(size) for size in p.size())
if p.device.type in ["cuda", torch._C._get_privateuse1_backend_name()]:
device_str = f" ({p.device})"
else:
device_str = ""
parastr = "{} containing: [{} of size {}{}]".format(
"Parameter" if isinstance(p, Parameter) else "Tensor",
p.dtype,
size_str,
device_str,
)
child_lines.append(" (" + str(k) + "): " + parastr)
else:
child_lines.append(
" (" + str(k) + "): Object of type: " + type(p).__name__
)
tmpstr = "\n".join(child_lines)
return tmpstr
def __call__(self, *args, **kwargs):
raise RuntimeError("ParameterList should not be called.")
class ParameterDict(Module):
r"""Holds parameters in a dictionary.
ParameterDict can be indexed like a regular Python dictionary, but Parameters it
contains are properly registered, and will be visible by all Module methods.
Other objects are treated as would be done by a regular Python dictionary
:class:`~torch.nn.ParameterDict` is an **ordered** dictionary.
:meth:`~torch.nn.ParameterDict.update` with other unordered mapping
types (e.g., Python's plain ``dict``) does not preserve the order of the
merged mapping. On the other hand, ``OrderedDict`` or another :class:`~torch.nn.ParameterDict`
will preserve their ordering.
Note that the constructor, assigning an element of the dictionary and the
:meth:`~torch.nn.ParameterDict.update` method will convert any :class:`~torch.Tensor` into
:class:`~torch.nn.Parameter`.
Args:
values (iterable, optional): a mapping (dictionary) of
(string : Any) or an iterable of key-value pairs
of type (string, Any)
Example::
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.params = nn.ParameterDict({
'left': nn.Parameter(torch.randn(5, 10)),
'right': nn.Parameter(torch.randn(5, 10))
})
def forward(self, x, choice):
x = self.params[choice].mm(x)
return x
"""
def __init__(self, parameters: Any = None) -> None:
super().__init__()
self._keys: Dict[str, None] = {}
if parameters is not None:
self.update(parameters)
def _key_to_attr(self, key: str) -> str:
if not isinstance(key, str):
raise TypeError(
"Index given to ParameterDict cannot be used as a key as it is "
f"not a string (type is '{type(key).__name__}'). Open an issue on "
"github if you need non-string keys."
)
else:
# Use the key as-is so that `.named_parameters()` returns the right thing
return key
def __getitem__(self, key: str) -> Any:
attr = self._key_to_attr(key)
return getattr(self, attr)
def __setitem__(self, key: str, value: Any) -> None:
# Note that all other function that add an entry to the dictionary part of
# the ParameterDict end up here. So this is the only place where we need
# to wrap things into Parameter if needed.
# Objects added via setattr() are not in the dictionary part and thus won't
# call into this function.
self._keys[key] = None
attr = self._key_to_attr(key)
if isinstance(value, torch.Tensor) and not isinstance(value, Parameter):
value = Parameter(value)
setattr(self, attr, value)
def __delitem__(self, key: str) -> None:
del self._keys[key]
attr = self._key_to_attr(key)
delattr(self, attr)
def __len__(self) -> int:
return len(self._keys)
def __iter__(self) -> Iterator[str]:
return iter(self._keys)
def __reversed__(self) -> Iterator[str]:
return reversed(list(self._keys))
def copy(self) -> "ParameterDict":
"""Return a copy of this :class:`~torch.nn.ParameterDict` instance."""
# We have to use an OrderedDict because the ParameterDict constructor
# behaves differently on plain dict vs OrderedDict
return ParameterDict(OrderedDict((k, self[k]) for k in self._keys))
def __contains__(self, key: str) -> bool:
return key in self._keys
def setdefault(self, key: str, default: Optional[Any] = None) -> Any:
"""Set the default for a key in the Parameterdict.
If key is in the ParameterDict, return its value.
If not, insert `key` with a parameter `default` and return `default`.
`default` defaults to `None`.
Args:
key (str): key to set default for
default (Any): the parameter set to the key
"""
if key not in self:
self[key] = default
return self[key]
def clear(self) -> None:
"""Remove all items from the ParameterDict."""
for k in self._keys.copy():
del self[k]
def pop(self, key: str) -> Any:
r"""Remove key from the ParameterDict and return its parameter.
Args:
key (str): key to pop from the ParameterDict
"""
v = self[key]
del self[key]
return v
def popitem(self) -> Tuple[str, Any]:
"""Remove and return the last inserted `(key, parameter)` pair from the ParameterDict."""
k, _ = self._keys.popitem()
# We need the key in the _keys to be able to access/del
self._keys[k] = None
val = self[k]
del self[k]
return k, val
def get(self, key: str, default: Optional[Any] = None) -> Any:
r"""Return the parameter associated with key if present. Otherwise return default if provided, None if not.
Args:
key (str): key to get from the ParameterDict
default (Parameter, optional): value to return if key not present
"""
return self[key] if key in self else default
def fromkeys(
self, keys: Iterable[str], default: Optional[Any] = None
) -> "ParameterDict":
r"""Return a new ParameterDict with the keys provided.
Args:
keys (iterable, string): keys to make the new ParameterDict from
default (Parameter, optional): value to set for all keys
"""
return ParameterDict((k, default) for k in keys)
def keys(self) -> Iterable[str]:
r"""Return an iterable of the ParameterDict keys."""
return self._keys.keys()
def items(self) -> Iterable[Tuple[str, Any]]:
r"""Return an iterable of the ParameterDict key/value pairs."""
return ((k, self[k]) for k in self._keys)
def values(self) -> Iterable[Any]:
r"""Return an iterable of the ParameterDict values."""
return (self[k] for k in self._keys)
def update(self, parameters: Union[Mapping[str, Any], "ParameterDict"]) -> None:
r"""Update the :class:`~torch.nn.ParameterDict` with key-value pairs from ``parameters``, overwriting existing keys.
.. note::
If :attr:`parameters` is an ``OrderedDict``, a :class:`~torch.nn.ParameterDict`, or
an iterable of key-value pairs, the order of new elements in it is preserved.
Args:
parameters (iterable): a mapping (dictionary) from string to
:class:`~torch.nn.Parameter`, or an iterable of
key-value pairs of type (string, :class:`~torch.nn.Parameter`)
"""
if not isinstance(parameters, container_abcs.Iterable):
raise TypeError(
"ParametersDict.update should be called with an "
"iterable of key/value pairs, but got " + type(parameters).__name__
)
if isinstance(parameters, (OrderedDict, ParameterDict)):
for key, parameter in parameters.items():
self[key] = parameter
elif isinstance(parameters, container_abcs.Mapping):
for key, parameter in sorted(parameters.items()):
self[key] = parameter
else:
for j, p in enumerate(parameters):
if not isinstance(p, container_abcs.Iterable):
raise TypeError(
"ParameterDict update sequence element "
"#" + str(j) + " should be Iterable; is" + type(p).__name__
)
if not len(p) == 2:
raise ValueError(
"ParameterDict update sequence element "
"#" + str(j) + " has length " + str(len(p)) + "; 2 is required"
)
# parameters as length-2 list too cumbersome to type, see ModuleDict.update comment
self[p[0]] = p[1] # type: ignore[assignment]
def extra_repr(self) -> str:
child_lines = []
for k, p in self.items():
if isinstance(p, torch.Tensor):
size_str = "x".join(str(size) for size in p.size())
if p.device.type in ["cuda", torch._C._get_privateuse1_backend_name()]:
device_str = f" ({p.device})"
else:
device_str = ""
parastr = "{} containing: [{} of size {}{}]".format(
"Parameter" if isinstance(p, Parameter) else "Tensor",
torch.typename(p),
size_str,
device_str,
)
child_lines.append(" (" + str(k) + "): " + parastr)
else:
child_lines.append(
" (" + str(k) + "): Object of type: " + type(p).__name__
)
tmpstr = "\n".join(child_lines)
return tmpstr
def __call__(self, input):
raise RuntimeError("ParameterDict should not be called.")
def __or__(self, other: "ParameterDict") -> "ParameterDict":
copy = self.copy()
copy.update(other)
return copy
def __ror__(self, other: "ParameterDict") -> "ParameterDict":
copy = other.copy()
copy.update(self)
return copy
def __ior__(self, other: "ParameterDict") -> Self:
self.update(other)
return self