2023-12-29 18:19:29 +01:00
# Concatenate
{:.no_toc}
< nav markdown = "1" class = "toc-class" >
* TOC
{:toc}
< / nav >
## The goal
Questions to [David Rotermund ](mailto:davrot@uni-bremen.de )
## [numpy.concatenate]()
```python
numpy.concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
```
> Join a sequence of arrays along an existing axis.
```python
import numpy as np
a = np.arange(0, 5)
print(a) # -> [0 1 2 3 4]
print(a.shape) # -> (5,)
b = np.arange(0, 8)
print(b) # -> [0 1 2 3 4 5 6 7]
print(b.shape) # -> (8,)
c = np.concatenate((a, b))
print(c) # -> [0 1 2 3 4 0 1 2 3 4 5 6 7]
print(c.shape) # -> (13,)
print(np.may_share_memory(a, c)) # -> False (Copy)
c = np.concatenate((a, b), axis=0)
print(c) # -> [0 1 2 3 4 0 1 2 3 4 5 6 7]
print(c.shape) # -> (13,)
print(np.may_share_memory(a, c)) # -> False (Copy)
c = np.concatenate(
(a, b), axis=1
) # AxisError: axis 1 is out of bounds for array of dimension 1
```
concatenate does not add necessary dimensions, you have to do that yourself:
```python
import numpy as np
a = np.arange(0, 10)
print(a.shape) # -> (10,)
b = np.arange(0, 10)
print(b.shape) # -> (10,)
c = np.concatenate((a, b), axis=0)
print(c.shape) # -> (20,)
c = np.concatenate((a, b), axis=1) # AxisError: axis 1 is out of bounds for array of dimension 1
```
```python
import numpy as np
a = np.arange(0, 10)[:, np.newaxis]
print(a.shape) # -> (10,1)
b = np.arange(0, 10)[:, np.newaxis]
print(b.shape) # -> (10,1)
c = np.concatenate((a, b), axis=0)
print(c.shape) # -> (20,1)
c = np.concatenate((a, b), axis=1)
print(c)
print(c.shape) # -> (10,2)
```
2023-12-29 18:23:17 +01:00
Output:
2023-12-29 18:19:29 +01:00
```python
[[0 0]
[1 1]
[2 2]
[3 3]
[4 4]
[5 5]
[6 6]
[7 7]
[8 8]
[9 9]]
```
2023-12-29 18:23:17 +01:00
## [numpy.r_](https://numpy.org/doc/stable/reference/generated/numpy.r_.html)
{: .topic-optional}
This is an optional topic!
```python
numpy.r_ = < numpy.lib.index_tricks.RClass object >
```
> Translates slice objects to concatenation along the first axis.
```python
import numpy as np
a = np.arange(0, 10)
print(a.shape) # -> (10,)
b = np.arange(0, 10)
print(b.shape) # -> (10,)
c = np.r_[a, b]
print(c.shape) # -> (20,)
```
2023-12-29 18:37:17 +01:00
### More r_
```python
import numpy as np
a = np.arange(0, 10)
print(a.shape) # -> (10,)
b = np.arange(0, 10)
print(b.shape) # -> (10,)
c = np.r_[a, b]
print(c.shape) # -> (20,)
c = np.r_["-1", a, b]
print(c.shape) # -> (20,)
c = np.r_["0, 2", a, b]
print(c.shape) # -> (2, 10)
c = np.r_["1, 2", a, b]
print(c.shape) # -> (1, 20)
c = np.r_["0, 1", a, b]
print(c.shape) # -> (20,)
c = np.r_["0, 2", a, b]
print(c.shape) # -> (2, 10)
c = np.r_["0, 3", a, b]
print(c.shape) # -> (2, 1, 10)
c = np.r_["r", a, b] # r == row
print(c.shape) # -> (1, 20)
c = np.r_["c", a, b] # c == column
print(c.shape) # -> (20, 1)
```
### Producing index arrays with r_
```python
import numpy as np
idx = np.r_[2:10, 20:100, 10]
print(idx)
print(idx.shape) # -> (89,)
```
Output:
```python
[ 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10]
```
**If we use idx for indexing a matrix/ array then we use indexing and not slicing.**
### Producing index arrays with [numpy.s_](https://numpy.org/doc/stable/reference/generated/numpy.s_.html)
```python
numpy.s_ = < numpy.lib.index_tricks.IndexExpression object >
```
> A nicer way to build up index tuples for arrays.
s_ is a simpler alternative to [slice ](https://docs.python.org/dev/library/functions.html#slice ):
```python
class slice(stop)
class slice(start, stop, step=None)
```
> Return a slice object representing the set of indices specified by range(start, stop, step). The start and step arguments default to None.
>
> Slice objects have read-only data attributes start, stop, and step which merely return the argument values (or their default). They have no other explicit functionality; however, they are used by NumPy and other third-party packages.
>
> Slice objects are also generated when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i].
2023-12-29 18:41:32 +01:00
```python
import numpy as np
idx = np.s_[2:10, 20:100, 10]
print(idx) # -> (slice(2, 10, None), slice(20, 100, None), 10)
data = np.zeros((20, 101, 11))
x = data[idx]
print(x.shape) # -> (8, 80)
```
2023-12-29 18:23:17 +01:00
## [numpy.c_](https://numpy.org/doc/stable/reference/generated/numpy.c_.html)
{: .topic-optional}
This is an optional topic!
```python
numpy.c_ = < numpy.lib.index_tricks.CClass object >
```
2023-12-29 18:37:17 +01:00
> Translates slice objects to concatenation along the second axis.
>
> This is short-hand for np.r_['-1,2,0', index expression], which is useful because of its common occurrence. In particular, arrays will be stacked along their last axis after being upgraded to at least 2-D with 1’ s post-pended to the shape (column vectors made out of 1-D arrays).
```python
import numpy as np
2023-12-29 18:23:17 +01:00
2023-12-29 18:37:17 +01:00
a = np.arange(0, 10)
print(a.shape) # -> (10,)
b = np.arange(0, 10)
print(b.shape) # -> (10,)
c = np.c_[a, b]
print(c.shape) # -> (10,2)
```
2023-12-29 18:23:17 +01:00