pytutorial/numpy/piecewise​/README.md

78 lines
1.6 KiB
Markdown
Raw Permalink Normal View History

# Piecewise
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## Top
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## [numpy.piecewise](https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html)
```python
numpy.piecewise(x, condlist, funclist, *args, **kw)
```
> Evaluate a piecewise-defined function.
>
> Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true.
```python
import numpy as np
a = np.arange(1, 11)
b = np.piecewise(a, [a < 5, a == 0, a > 5], [-1, 0, 1])
print(a) # -> [ 1 2 3 4 5 6 7 8 9 10]
print(b) # -> [-1 -1 -1 -1 0 1 1 1 1 1]
```
Instead of values we can use functions (Or you can use lambda functions...):
```python
import numpy as np
def function_a(input):
return input**2
def function_b(input):
return np.sqrt(input)
a = np.arange(1, 11)
b = np.piecewise(a, [a < 5, a == 0, a > 5], [function_a, 0, function_b])
print(a) # -> [ 1 2 3 4 5 6 7 8 9 10]
print(b) # -> [ 1 4 9 16 0 2 2 2 3 3]
```
**However, the results for the sqrt are strange.** Here we see a case where the automatic dtype switch to float64 failed. This is why I overzealously mange / define the dtypes.
```python
import numpy as np
def function_a(input):
return input**2
def function_b(input):
return np.sqrt(input)
a = np.arange(1, 11).astype(dtype=np.float32)
b = np.piecewise(a, [a < 5, a == 0, a > 5], [function_a, 0, function_b])
print(a) # -> [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
print(b) # -> [ 1. 4. 9. 16. 0. 2.45 2.65 2.83 3. 3.16]
```