2023-12-29 19:02:01 +01:00
# Unique
{:.no_toc}
< nav markdown = "1" class = "toc-class" >
* TOC
{:toc}
< / nav >
## The goal
Questions to [David Rotermund ](mailto:davrot@uni-bremen.de )
## [numpy.unique](https://numpy.org/doc/stable/reference/generated/numpy.unique.html)
```python
numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *, equal_nan=True)
```
> Find the unique elements of an array.
>
> Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements:
> * the indices of the input array that give the unique values
> * the indices of the unique array that reconstruct the input array
> * the number of times each unique value comes up in the input array
2023-12-29 19:10:19 +01:00
**unique can be used on multi-dimensional arrays. However, the results are strange since empty places need to be filled for shaping the results into one common matrix.**
```python
import numpy as np
a = np.arange(10, 21)
print(a) # -> [10 11 12 13 14 15 16 17 18 19 20]
idx = np.r_[0:5, 3:8]
print(idx) # -> [0 1 2 3 4 3 4 5 6 7]
print(a[idx]) # -> [10 11 12 13 14 13 14 15 16 17]
print(np.unique(idx)) # -> [0 1 2 3 4 5 6 7]
print(np.unique(a[idx])) # -> [10 11 12 13 14 15 16 17]
```
## There are more return arguments available
```python
import numpy as np
a = np.r_[0:5, 3:8]
print(a) # -> [0 1 2 3 4 3 4 5 6 7]
values, unique_index = np.unique(a, return_index=True)
_, unique_inverse = np.unique(a, return_inverse=True)
_, unique_counts = np.unique(a, return_counts=True)
print(values) # -> [0 1 2 3 4 5 6 7]
print(unique_index) # -> [0 1 2 3 4 7 8 9]
print(unique_inverse) # -> [0 1 2 3 4 3 4 5 6 7]
print(unique_counts) # -> [1 1 1 2 2 1 1 1]
```