pytutorial/scipy/scipy.stats.fisher_exact/README.md

189 lines
5.5 KiB
Markdown
Raw Permalink Normal View History

# Fisher Exact Test
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## Top
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## [scipy.stats.fisher_exact](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html)
```python
scipy.stats.fisher_exact(table, alternative='two-sided')
```
> Perform a Fisher exact test on a 2x2 contingency table.
>
> The null hypothesis is that the true odds ratio of the populations underlying the observations is one, and the observations were sampled from these populations under a condition: the marginals of the resulting table must equal those of the observed table. The statistic returned is the unconditional maximum likelihood estimate of the odds ratio, and the p-value is the probability under the null hypothesis of obtaining a table at least as extreme as the one that was actually observed. There are other possible choices of statistic and two-sided p-value definition associated with Fishers exact test; please see the Notes for more information.
> Parameters:
>
> **alternative** : {two-sided, less, greater}, optional
> Defines the alternative hypothesis. The following options are available (default is two-sided):
>
> * two-sided: the odds ratio of the underlying population is not one (The two-sided p-value is the probability that, under the null hypothesis, a random table would have a probability equal to or less than the probability of the input table.)
> * less: the odds ratio of the underlying population is less than one
> * greater: the odds ratio of the underlying population is greater than one
> Returns:
>
> **res** : SignificanceResult
>
> An object containing attributes:
>
> **statistic** : float
>
> This is the prior odds ratio, not a posterior estimate.
>
> **pvalue** : float
>
> The probability under the null hypothesis of obtaining a table at least as extreme as the one that was actually observed.
The input table is [[a, b], [c, d]].
|||
|---|---|
|a| b |
|c|d|
Where $N_A = a + c$ for the elements in group A (performance values of network A with $N_A$ as number of test pattern) and $N_B = b + d$ for the elements in group B (performance values of network B with $N_B$ as number of test pattern).
|||
|---|---|
|$N_A - c$| $N_B-d$ |
|c|d|
If network architectures are tested, typically, the same data set is used in both conditions and such $N = N_A = N_B$.
|||
|---|---|
|$N - c$| $N - d$ |
|c|d|
## [Example](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html)
||Group A|Group B|
|---|---|---|
|Yes| 7 | 17 |
|No| 15| 5|
This translates in to the table: [[7, 17], [15, 5]]
```python
from scipy.stats import fisher_exact
res = fisher_exact([[7, 17], [15, 5]], alternative="less")
print(res.statistic) # -> 0.13725490196078433
print(res.pvalue) # -> 0.0028841933752349743
```
## Network performance analysis
![image1](image1.png)
```python
from scipy.stats import fisher_exact
import numpy as np
import matplotlib.pyplot as plt
N: int = 10000
correct_b: int = N // 2
values = np.arange(0, N + 1, 100)
results_less = np.zeros((values.shape[0]))
results_greater = np.zeros((values.shape[0]))
results_two_sided = np.zeros((values.shape[0]))
for i in range(0, values.shape[0]):
correct_a: int = int(values[i])
res = fisher_exact(
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less"
)
results_less[i] = res.pvalue
for i in range(0, values.shape[0]):
correct_a = int(values[i])
res = fisher_exact(
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater"
)
results_greater[i] = res.pvalue
for i in range(0, values.shape[0]):
correct_a = int(values[i])
res = fisher_exact(
[[N - correct_a, N - correct_b], [correct_a, correct_b]],
alternative="two-sided",
)
results_two_sided[i] = res.pvalue
plt.plot(100.0 * values / N, results_two_sided, label="two-sided")
plt.plot(100.0 * values / N, results_less, label="less")
plt.plot(100.0 * values / N, results_greater, label="greater")
plt.title(f"Compared to a performance B of {100.0 * correct_b /N}%")
plt.ylabel("p-value")
plt.xlabel("Correct [%]")
plt.legend()
plt.show()
```
![image2](image2.png)
```python
from scipy.stats import fisher_exact
import numpy as np
import matplotlib.pyplot as plt
N: int = 10000
correct_b: int = int(N * 0.99)
values = np.arange(int(N * 0.98), N + 1)
results_less = np.zeros((values.shape[0]))
results_greater = np.zeros((values.shape[0]))
results_two_sided = np.zeros((values.shape[0]))
for i in range(0, values.shape[0]):
correct_a: int = int(values[i])
res = fisher_exact(
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less"
)
results_less[i] = res.pvalue
for i in range(0, values.shape[0]):
correct_a = int(values[i])
res = fisher_exact(
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater"
)
results_greater[i] = res.pvalue
for i in range(0, values.shape[0]):
correct_a = int(values[i])
res = fisher_exact(
[[N - correct_a, N - correct_b], [correct_a, correct_b]],
alternative="two-sided",
)
results_two_sided[i] = res.pvalue
plt.plot(100.0 * values / N, results_two_sided, label="two-sided")
plt.plot(100.0 * values / N, results_less, label="less")
plt.plot(100.0 * values / N, results_greater, label="greater")
plt.title(f"Compared to a performance B of {100.0 * correct_b /N}%")
plt.ylabel("p-value")
plt.xlabel("Correct [%]")
plt.legend()
plt.show()
```