22 lines
494 B
Python
22 lines
494 B
Python
|
from tensorflow import keras
|
||
|
from DataGenerator import DataGenerator
|
||
|
|
||
|
number_of_classes: int = 10
|
||
|
size_of_batch_test: int = 100
|
||
|
model_id: int = 49
|
||
|
|
||
|
test_data = DataGenerator(
|
||
|
train=False,
|
||
|
size_of_batch=size_of_batch_test,
|
||
|
number_of_classes=number_of_classes,
|
||
|
do_shuffle=False,
|
||
|
)
|
||
|
|
||
|
keras.backend.clear_session()
|
||
|
|
||
|
network = keras.models.load_model("./Model_" + str(model_id) + ".h5")
|
||
|
|
||
|
test_loss, test_acc = network.evaluate(x=test_data)
|
||
|
|
||
|
print(f"Correct: {test_acc * 100.0:.2f}%")
|