pytutorial/tensorflow/intro/keras_learn.py

111 lines
2.7 KiB
Python
Raw Normal View History

from tensorflow import keras
from DataGenerator import DataGenerator
epoch_max: int = 50
number_of_classes: int = 10
size_of_batch_train: int = 100
train_data = DataGenerator(
train=True,
size_of_batch=size_of_batch_train,
number_of_classes=number_of_classes,
do_shuffle=True,
)
number_of_channels: int = train_data.number_of_channel
# With data augmentation (okay this should be fixed in DataGenerator.py :-( )
input_dimensions = (train_data.dimensions[0] - 4, train_data.dimensions[0] - 4)
# Without data augmentation
# input_dimensions = train_data.dimensions
number_of_pattern_train = train_data.number_of_pattern
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_neurons_flatten1: int = 1024
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
keras.backend.clear_session()
network = keras.Sequential()
# Conv 1
network.add(
keras.layers.Conv2D(
number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
activation="relu",
input_shape=(input_dimensions[0], input_dimensions[1], number_of_channels),
padding="valid",
strides=stride_conv1,
data_format="channels_last",
use_bias=True,
)
)
# Pool 1
network.add(
keras.layers.MaxPooling2D(
pool_size=kernel_size_pool1,
padding="valid",
strides=stride_pool1,
data_format="channels_last",
)
)
# Conv 2
network.add(
keras.layers.Conv2D(
number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
activation="relu",
padding="valid",
strides=stride_conv2,
data_format="channels_last",
use_bias=True,
)
)
# Pool 2
network.add(
keras.layers.MaxPooling2D(
pool_size=kernel_size_pool2,
padding="valid",
strides=stride_pool2,
data_format="channels_last",
)
)
# Flatten
network.add(keras.layers.Flatten(data_format="channels_last"))
# Full layer
network.add(
keras.layers.Dense(number_of_neurons_flatten1, activation="relu", use_bias=True)
)
# Output layer
network.add(keras.layers.Dense(number_of_classes, activation="softmax"))
network.compile(
loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=["accuracy"],
)
for epoch_id in range(0, epoch_max):
print(f"Epoch: {epoch_id} of {epoch_max - 1}")
network.fit(x=train_data)
network.summary()
network.save("Model_" + str(epoch_id) + ".h5")