2023-12-28 18:37:23 +01:00
# Creating networks
{:.no_toc}
< nav markdown = "1" class = "toc-class" >
* TOC
{:toc}
< / nav >
## The goal
In these days, building networks is very important.
Questions to [David Rotermund ](mailto:davrot@uni-bremen.de )
## A fast way to build a network with [Sequential](https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential)
```python
CLASS torch.nn.Sequential(*args: Module)
```
> A sequential container. Modules will be added to it in the order they are passed in the constructor.
Example:
2023-12-28 18:40:52 +01:00
![image0 ](network_0.png )
We can just chain the layers together:
2023-12-28 18:37:23 +01:00
```python
2023-12-28 18:40:52 +01:00
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
2023-12-28 18:37:23 +01:00
2023-12-28 18:40:52 +01:00
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
print(network)
```
```python
Sequential(
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU()
(5): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=576, out_features=1024, bias=True)
(8): ReLU()
(9): Linear(in_features=1024, out_features=10, bias=True)
)
2023-12-28 18:37:23 +01:00
```
2023-12-28 18:40:52 +01:00
Congratulations you now have the network you wanted.
2023-12-28 18:52:01 +01:00
## Inspecting the network object
2023-12-28 18:40:52 +01:00
2023-12-28 18:52:01 +01:00
```python
print(network.__dict__)
```
The output is:
```python
{'training': True,
'_parameters': OrderedDict(),
'_buffers': OrderedDict(),
'_non_persistent_buffers_set': set(),
'_backward_pre_hooks': OrderedDict()
'_backward_hooks': OrderedDict(),
'_is_full_backward_hook': None,
'_forward_hooks': OrderedDict(),
'_forward_hooks_with_kwargs': OrderedDict(),
'_forward_pre_hooks': OrderedDict(),
'_forward_pre_hooks_with_kwargs': OrderedDict(),
'_state_dict_hooks': OrderedDict(),
'_state_dict_pre_hooks': OrderedDict(),
'_load_state_dict_pre_hooks': OrderedDict(),
'_load_state_dict_post_hooks': OrderedDict(),
'_modules': OrderedDict([('0', Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))), ('1', ReLU()), ('2', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('3', Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))), ('4', ReLU()), ('5', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('6', Flatten(start_dim=1, end_dim=-1)), ('7', Linear(in_features=576, out_features=1024, bias=True)), ('8', ReLU()), ('9', Linear(in_features=1024, out_features=10, bias=True))])}
```
The obvious question is: What does this tell us? We see that the network is set to training mode but more importantly we can see our network architecture:
```python
print(network.__dict__["_modules"])
```python
```python
OrderedDict([
('0', Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))),
('1', ReLU()),
('2', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)),
('3', Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))),
('4', ReLU()),
('5', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)),
('6', Flatten(start_dim=1, end_dim=-1)),
('7', Linear(in_features=576, out_features=1024, bias=True)),
('8', ReLU()),
('9', Linear(in_features=1024, out_features=10, bias=True))])
```
2023-12-28 18:40:52 +01:00
2023-12-28 18:52:01 +01:00
## Using the network
First we need some input data
```python
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_pattern: int = 111
fake_input = torch.rand(
(number_of_pattern, input_number_of_channel, input_dim_x, input_dim_y),
dtype=torch.float32,
)
```
Output:
```python
output = network(fake_input)
print(fake_input.shape) # -> torch.Size([111, 1, 24, 24])
print(output.shape) # -> torch.Size([111, 10])
```
2024-01-02 17:57:54 +01:00
## Flatten -> Linear Problem
If you want to use a linear layer after the flatten layer, you need to know the output dimensions of the flatten layer. If you know, everything is good. If not what to do then? There are two main alternatives:
### [LazyLinear Layer](https://pytorch.org/docs/stable/generated/torch.nn.LazyLinear.html)
```python
CLASS torch.nn.LazyLinear(out_features, bias=True, device=None, dtype=None)
```
> A torch.nn.Linear module where in_features is inferred.
>
> In this module, the weight and bias are of torch.nn.UninitializedParameter class. They will be initialized after the first call to forward is done and the module will become a regular torch.nn.Linear module. The in_features argument of the Linear is inferred from the input.shape[-1].
>
> Check the torch.nn.modules.lazy.LazyModuleMixin for [further documentation](https://pytorch.org/docs/stable/generated/torch.nn.modules.lazy.LazyModuleMixin.html#torch.nn.modules.lazy.LazyModuleMixin) on lazy modules and their limitations.
**If you want to manipulate the weights and such of this layer before using it then this can get ugly.** If possible you should try to use alternative 2:
### Building your network iteratively
Let us build the network layer by layer and assume we don't know **number_of_output_channels_flatten1 = 576** . But we know that the input has 1 input channel and 24x24 pixel in the spatial domain.
2024-01-02 18:06:33 +01:00
```python
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
fake_input = torch.zeros((1, input_number_of_channel, input_dim_x, input_dim_y))
print(fake_input.shape) # -> torch.Size([1, 1, 24, 24])
network = torch.nn.Sequential()
network.append(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 32, 20, 20])
network.append(torch.nn.ReLU())
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 32, 20, 20])
network.append(
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 32, 10, 10])
network.append(
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 64, 6, 6])
network.append(torch.nn.ReLU())
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 64, 6, 6])
network.append(
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 64, 3, 3])
2024-01-02 17:57:54 +01:00
2024-01-02 18:06:33 +01:00
network.append(
torch.nn.Flatten(
start_dim=1,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 576])
number_of_output_channels_flatten1 = fake_input.shape[1]
network.append(
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 1024])
2024-01-02 17:57:54 +01:00
2024-01-02 18:06:33 +01:00
network.append(torch.nn.ReLU())
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 1024])
network.append(
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 10])
print(network)
```
2024-01-02 17:57:54 +01:00
2024-01-02 18:16:52 +01:00
## [Save and load the network](https://pytorch.org/tutorials/beginner/saving_loading_models.html)
### [TORCH.SAVE](https://pytorch.org/docs/stable/generated/torch.save.html#torch-save)
```python
torch.save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)
```
> Saves an object to a disk file.
### [TORCH.LOAD](https://pytorch.org/docs/stable/generated/torch.load.html)
```python
torch.load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, * *pickle_load_args)
```
> Loads an object saved with torch.save() from a file.
> torch.load() uses Python’ s unpickling facilities but treats storages, which underlie tensors, specially. They are first deserialized on the CPU and are then moved to the device they were saved from. If this fails (e.g. because the run time system doesn’ t have certain devices), an exception is raised. However, storages can be dynamically remapped to an alternative set of devices using the map_location argument.
> If map_location is a callable, it will be called once for each serialized storage with two arguments: storage and location. The storage argument will be the initial deserialization of the storage, residing on the CPU. Each serialized storage has a location tag associated with it which identifies the device it was saved from, and this tag is the second argument passed to map_location. The builtin location tags are 'cpu' for CPU tensors and 'cuda:device_id' (e.g. 'cuda:2') for CUDA tensors. map_location should return either None or a storage. If map_location returns a storage, it will be used as the final deserialized object, already moved to the right device. Otherwise, torch.load() will fall back to the default behavior, as if map_location wasn’ t specified.
> If map_location is a torch.device object or a string containing a device tag, it indicates the location where all tensors should be loaded.
> Otherwise, if map_location is a dict, it will be used to remap location tags appearing in the file (keys), to ones that specify where to put the storages (values).
> User extensions can register their own location tags and tagging and deserialization methods using torch.serialization.register_package().
### Save the whole network
One way to do it, is like this:
```python
torch.save(network, "torch_network.pt")
```
```python
network = torch.load("torch_network.pt")
network.eval()
```
#### Example:
Save:
```python
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
torch.save(network, "torch_network.pt")
```
Load:
```python
import torch
network = torch.load("torch_network.pt")
network.eval()
print(network)
```
Output:
```python
Sequential(
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU()
(5): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=576, out_features=1024, bias=True)
(8): ReLU()
(9): Linear(in_features=1024, out_features=10, bias=True)
)
```