pytutorial/pandas/basics/README.md

212 lines
7.1 KiB
Markdown
Raw Normal View History

# [Pandas](https://pandas.pydata.org/)
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
```shell
pip install pandas
```
## [Pandas](https://pandas.pydata.org/)
The two most important data types of Pandas are:
* Series
* Data Frames
> “Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.”​
It is the basis for:
* [scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html)
> This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more.
* [Pingouin](https://pingouin-stats.org/build/html/index.html)
> Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy.
* [rPy2](https://rpy2.github.io/)
> rpy2 is an interface to R running embedded in a Python process.
## [Pandas.Series](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas-series)
```python
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=None, fastpath=False)
```
> One-dimensional ndarray with axis labels (including time series).
>
> Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).
>
> Operations between Series (+, -, /, *, **) align values based on their associated index values they need not be the same length. The result index will be the sorted union of the two indexes.
Example 1:
```python
import pandas as pd
example = pd.Series(["Bambu", "Tree", "Sleep"])
print(example)
```
Output:
```python
0 Bambu
1 Tree
2 Sleep
dtype: object
```
Example 2:
```python
import numpy as np
import pandas as pd
example = pd.Series([99, 88, 32])
print(example)
```
Output:
```python
0 99
1 88
2 32
dtype: int64
```
Example 3:
```python
import numpy as np
import pandas as pd
rng = np.random.default_rng()
a = rng.random((5))
example = pd.Series(a)
print(example)
```
Output:
```python
0 0.305920
1 0.633360
2 0.219094
3 0.005722
4 0.006673
dtype: float64
```
Example 4:
```python
import pandas as pd
example = pd.Series(["Bambu", 3, "Sleep"])
print(example)
```
Output:
```python
0 Bambu
1 3
2 Sleep
dtype: object
```
### index and values
```python
import pandas as pd
example = pd.Series(["Bambu", "Tree", "Sleep"])
print(example.index)
print()
print(example.values)
```
Output:
```python
RangeIndex(start=0, stop=3, step=1)
['Bambu' 'Tree' 'Sleep']
```
## [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame)
```python
class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=None)
```
> Two-dimensional, size-mutable, potentially heterogeneous tabular data.
>
> Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.
## [pandas.concat](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html)
```python
pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=None)
```
> Concatenate pandas objects along a particular axis.
>
> Allows optional set logic along the other axes.
>
> Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.
## [I/O operations](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#input-output)
||
|---|
|[Pickling](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#pickling)|
|[Flat file](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#flat-file)|
|[Clipboard](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#clipboard)|
|[Excel](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#excel)|
|[JSON](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#json)|
|[HTML](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#html)|
|[XML](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#xml)|
|[Latex](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#latex)|
|[HDFStore: PyTables (HDF5)](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#hdfstore-pytables-hdf5)|
|[Feather](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#feather)|
|[Parquet](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#parquet)|
|[ORC](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#orc)|
|[SAS](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#sas)|
|[SPSS](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#spss)|
|[SQL](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#sql)|
|[Google BigQuery](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#google-bigquery)|
|[STATA](https://pandas.pydata.org/pandas-docs/stable/reference/io.html#stata)|
### csv (“comma” separated values file)
#### [read](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv)
```python
pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default, delimiter=None, header='infer', names=_NoDefault.no_default, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=None, infer_datetime_format=_NoDefault.no_default, keep_date_col=False, date_parser=_NoDefault.no_default, date_format=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, on_bad_lines='error', delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options=None, dtype_backend=_NoDefault.no_default)
```
> Read a comma-separated values (csv) file into DataFrame.
#### [write](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv)
```python
DataFrame.to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', lineterminator=None, chunksize=None, date_format=None, doublequote=True, escapechar=None, decimal='.', errors='strict', storage_options=None)
```
> Write object to a comma-separated values (csv) file.
### Excel
## JSON