pytutorial/numpy/new_matrix/README.md

121 lines
1.5 KiB
Markdown
Raw Normal View History

# New matrices
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
Making a new matrix...
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
Using **import numpy as np** is the standard.
## Simple example -- new [np.zeros()](https://numpy.org/doc/stable/reference/generated/numpy.zeros.html)
Define the size of your new matrix with a tuple, e.g.
```python
M = numpy.zeros((DIM_0, DIM_1, DIM_2, …))
```
### 1d
```python
import numpy as np
M = np.zeros((2))
print(M)
```
Output:
```python
[0. 0.]
```
### 2d
```python
import numpy as np
M = np.zeros((2, 3))
print(M)
```
Output:
```python
[[0. 0. 0.]
[0. 0. 0.]]
```
### 3d
```python
import numpy as np
M = np.zeros((2, 3, 4))
print(M)
```
Output:
```python
[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]
```
## Simple example -- recycle [np.zeros_like()](https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html)
If you have a matrix with the same size you want then you can use zeros_like. This will also copy other properties like the data type.
as a prototype use
N = numpy.zeros_like(M)
```python
import numpy as np
M = np.zeros((2, 3, 4))
N = np.zeros_like(M)
print(N)
```
Output:
```python
[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]
```
## Remember unpacking
{: .topic-optional}
This is an optional topic!
```python
import numpy as np
d = (3, 4)
M = np.zeros((2, *d))
print(M)
```