> Return a list of coordinate matrices from coordinate vectors.
>
> Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn.
> An instance which returns a dense multi-dimensional “meshgrid”.
>
> An instance which returns a dense (or fleshed out) mesh-grid when indexed, so that each returned argument has the same shape. The dimensions and number of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex number, then the stop is not inclusive.
>
> However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted as specifying the number of points to create between the start and stop values, where the stop value is inclusive.
> An instance which returns an open multi-dimensional “meshgrid”.
> An instance which returns an open (i.e. not fleshed out) mesh-grid when indexed, so that only one dimension of each returned array is greater than 1. The dimension and number of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex number, then the stop is not inclusive.
> However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted as specifying the number of points to create between the start and stop values, where the stop value is inclusive.
> This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in all but one dimension and the dimension with the non-unit shape value cycles through all N dimensions.
>
> Using ix_ one can quickly construct index arrays that will index the cross product. a[np.ix_([1,3],[2,5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]].
```python
import numpy as np
a, b = np.ix_(np.arange(2, 8), np.arange(4, 12))
print(a)
print(a.shape) # -> (6, 1)
print()
print(b) # -> [[ 4 5 6 7 8 9 10 11]]
print(b.shape) # -> (1, 8)
```
Output:
```python
[[2]
[3]
[4]
[5]
[6]
[7]]
```
```python
import numpy as np
a, b = np.ix_([True, False, False, True, True], [True, True, False, False, True])