Create README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
4a05bdeaa9
commit
000d769a8a
1 changed files with 47 additions and 0 deletions
47
pandas/basics/README.md
Normal file
47
pandas/basics/README.md
Normal file
|
@ -0,0 +1,47 @@
|
||||||
|
# [Pandas](https://pandas.pydata.org/)
|
||||||
|
{:.no_toc}
|
||||||
|
|
||||||
|
<nav markdown="1" class="toc-class">
|
||||||
|
* TOC
|
||||||
|
{:toc}
|
||||||
|
</nav>
|
||||||
|
|
||||||
|
## The goal
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install pandas
|
||||||
|
```
|
||||||
|
|
||||||
|
## [Pandas](https://pandas.pydata.org/)
|
||||||
|
|
||||||
|
|
||||||
|
The two most important data types of Pandas are:
|
||||||
|
* Series
|
||||||
|
* Data Frames
|
||||||
|
|
||||||
|
> “Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.”
|
||||||
|
|
||||||
|
It is the basis for:
|
||||||
|
* [scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html)
|
||||||
|
> This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more.
|
||||||
|
* [Pingouin](https://pingouin-stats.org/build/html/index.html)
|
||||||
|
> Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy.
|
||||||
|
* [rPy2](https://rpy2.github.io/)
|
||||||
|
> rpy2 is an interface to R running embedded in a Python process.
|
||||||
|
|
||||||
|
## [Pandas.Series](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas-series)
|
||||||
|
|
||||||
|
```python
|
||||||
|
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=None, fastpath=False)
|
||||||
|
```
|
||||||
|
|
||||||
|
> One-dimensional ndarray with axis labels (including time series).
|
||||||
|
>
|
||||||
|
> Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).
|
||||||
|
>
|
||||||
|
> Operations between Series (+, -, /, *, **) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes.
|
||||||
|
|
Loading…
Reference in a new issue