Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
cbde9f1cf5
commit
032b71d409
1 changed files with 67 additions and 0 deletions
|
@ -1 +1,68 @@
|
|||
# [FFT](https://numpy.org/doc/stable/reference/routines.fft.html)
|
||||
{:.no_toc}
|
||||
|
||||
<nav markdown="1" class="toc-class">
|
||||
* TOC
|
||||
{:toc}
|
||||
</nav>
|
||||
|
||||
## The goal
|
||||
|
||||
Fouriert transformations are an important part of data analysis.
|
||||
|
||||
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||||
|
||||
## [Numpy](https://numpy.org/doc/stable/reference/routines.fft.html) vs [scipy](https://docs.scipy.org/doc/scipy/tutorial/fft.html#fourier-transforms-scipy-fft)
|
||||
|
||||
```shell
|
||||
pip install scipy
|
||||
```
|
||||
|
||||
Numpy says [itself](https://numpy.org/doc/stable/reference/routines.fft.html#discrete-fourier-transform-numpy-fft):
|
||||
> The SciPy module scipy.fft is a more comprehensive superset of numpy.fft, which includes only a basic set of routines.
|
||||
|
||||
|
||||
|
||||
```python
|
||||
```
|
||||
|
||||
## [Discrete Fourier Transform (numpy.fft)](https://numpy.org/doc/stable/reference/routines.fft.html#discrete-fourier-transform-numpy-fft)
|
||||
|
||||
## [Standard FFTs](https://numpy.org/doc/stable/reference/routines.fft.html#standard-ffts)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
|[fft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft)|Compute the one-dimensional discrete Fourier Transform.|
|
||||
|[ifft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft)|Compute the one-dimensional inverse discrete Fourier Transform.|
|
||||
|[fft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2)|Compute the 2-dimensional discrete Fourier Transform.|
|
||||
|[ifft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2)|Compute the 2-dimensional inverse discrete Fourier Transform.|
|
||||
|[fftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn)|Compute the N-dimensional discrete Fourier Transform.|
|
||||
|[ifftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn)|Compute the N-dimensional inverse discrete Fourier Transform.|
|
||||
|
||||
## [Real FFTs](https://numpy.org/doc/stable/reference/routines.fft.html#real-ffts)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
|[rfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft)|Compute the one-dimensional discrete Fourier Transform for real input.|
|
||||
|[irfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft)|Computes the inverse of rfft.|
|
||||
|[rfft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2)|Compute the 2-dimensional FFT of a real array.|
|
||||
|[irfft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2)|Computes the inverse of rfft2.|
|
||||
|[rfftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn)|Compute the N-dimensional discrete Fourier Transform for real input.|
|
||||
|[irfftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfftn.html#numpy.fft.irfftn)|Computes the inverse of rfftn. |
|
||||
|
||||
## [Hermitian FFTs](https://numpy.org/doc/stable/reference/routines.fft.html#hermitian-ffts)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
|[hfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft)|Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.|
|
||||
|[ihfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft)|Compute the inverse FFT of a signal that has Hermitian symmetry.|
|
||||
|
||||
## [Helper routines](https://numpy.org/doc/stable/reference/routines.fft.html#helper-routines)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
|[fftfreq(n[, d])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq)|Return the Discrete Fourier Transform sample frequencies.|
|
||||
|[rfftfreq(n[, d])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq)|Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).|
|
||||
|[fftshift(x[, axes])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift)|Shift the zero-frequency component to the center of the spectrum.|
|
||||
|[ifftshift(x[, axes])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift)|The inverse of fftshift.|
|
||||
|
||||
|
|
Loading…
Reference in a new issue