diff --git a/numpy_fft_1/README.md b/numpy_fft_1/README.md index 1c7e5e5..4793318 100644 --- a/numpy_fft_1/README.md +++ b/numpy_fft_1/README.md @@ -54,3 +54,22 @@ Since we deal with a 1 dimensional time series y_fft: np.ndarray = np.fft.rfft(y) frequency_axis: np.ndarray = np.fft.rfftfreq(y.shape[0]) * sampling_frequency ``` + +## Calculating a [normalized](https://de.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html) power spectral density + +The goal is to produce a power spectral density that is compatible with the [Parseval's identity](https://en.wikipedia.org/wiki/Parseval%27s_identity). Or in other words: the sum over the power spectrum without the zero frequency has the same value as the variance of the time series. + +```python +y_power: np.ndarray = (1 / (sampling_frequency * y.shape[0])) * np.abs(y_fft) ** 2 +y_power[1:-2] *= 2 + +if frequency_axis[-1] != (sampling_frequency / 2.0): + y_power[-1] *= 2 +``` + +Check of the normalization: + +```python +print(y_power[1:].sum()) # -> 0.5 +print(np.var(y)) # -> 0.5 +```