diff --git a/scikit-learn/overview/README.md b/scikit-learn/overview/README.md index 58d7be9..ef00c7b 100644 --- a/scikit-learn/overview/README.md +++ b/scikit-learn/overview/README.md @@ -51,9 +51,9 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.b |cluster.DBSCAN([eps, min_samples, metric, ...])|Perform DBSCAN clustering from vector array or distance matrix.| |cluster.HDBSCAN([min_cluster_size, ...])|Cluster data using hierarchical density-based clustering.| |cluster.FeatureAgglomeration([n_clusters, ...])|Agglomerate features.| -|**cluster.KMeans([n_clusters, init, n_init, ...])**|**K-Means clustering.**| +|**[cluster.KMeans([n_clusters, init, n_init, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans)**|**K-Means clustering.**| |cluster.BisectingKMeans([n_clusters, init, ...])|Bisecting K-Means clustering.| -|**cluster.MiniBatchKMeans([n_clusters, init, ...])**|**Mini-Batch K-Means clustering.**| +|**[cluster.MiniBatchKMeans([n_clusters, init, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans)**|**Mini-Batch K-Means clustering.**| |cluster.MeanShift(*[, bandwidth, seeds, ...])|Mean shift clustering using a flat kernel.| |cluster.OPTICS(*[, min_samples, max_eps, ...])|Estimate clustering structure from vector array.| |cluster.SpectralClustering([n_clusters, ...])|Apply clustering to a projection of the normalized Laplacian.| @@ -125,7 +125,7 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.d |---|---| |decomposition.DictionaryLearning([...])|Dictionary learning.| |decomposition.FactorAnalysis([n_components, ...])|Factor Analysis (FA).| -|**decomposition.FastICA([n_components, ...])**|**FastICA: a fast algorithm for Independent Component Analysis.**| +|**[decomposition.FastICA([n_components, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA)**|**FastICA: a fast algorithm for Independent Component Analysis.**| |decomposition.IncrementalPCA([n_components, ...])|Incremental principal components analysis (IPCA).| |decomposition.KernelPCA([n_components, ...])|Kernel Principal component analysis (KPCA) [R396fc7d924b8-1].| |decomposition.LatentDirichletAllocation([...])|Latent Dirichlet Allocation with online variational Bayes algorithm.| @@ -133,7 +133,7 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.d |decomposition.MiniBatchSparsePCA([...])|Mini-batch Sparse Principal Components Analysis.| |decomposition.NMF([n_components, init, ...])|Non-Negative Matrix Factorization (NMF).| |decomposition.MiniBatchNMF([n_components, ...])|Mini-Batch Non-Negative Matrix Factorization (NMF).| -|**decomposition.PCA([n_components, copy, ...])**|**Principal component analysis (PCA).**| +|**[decomposition.PCA([n_components, copy, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA)**|**Principal component analysis (PCA).**| |decomposition.SparsePCA([n_components, ...])|Sparse Principal Components Analysis (SparsePCA).| |decomposition.SparseCoder(dictionary, *[, ...])|Sparse coding.| |decomposition.TruncatedSVD([n_components, ...])|Dimensionality reduction using truncated SVD (aka LSA).| @@ -660,8 +660,8 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.e |neighbors.BallTree(X[, leaf_size, metric])|BallTree for fast generalized N-point problems| |neighbors.KDTree(X[, leaf_size, metric])|KDTree for fast generalized N-point problems| |neighbors.KernelDensity(*[, bandwidth, ...])|Kernel Density Estimation.| -|**neighbors.KNeighborsClassifier([...])**|**Classifier implementing the k-nearest neighbors vote.**| -|neighbors.KNeighborsRegressor([n_neighbors, ...])|Regression based on k-nearest neighbors.| +|**[neighbors.KNeighborsClassifier([...])](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier)**|**Classifier implementing the k-nearest neighbors vote.**| +|**[neighbors.KNeighborsRegressor([n_neighbors, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor)**|**Regression based on k-nearest neighbors.**| |neighbors.KNeighborsTransformer(*[, mode, ...])|Transform X into a (weighted) graph of k nearest neighbors.| |neighbors.LocalOutlierFactor([n_neighbors, ...])|Unsupervised Outlier Detection using the Local Outlier Factor (LOF).| |neighbors.RadiusNeighborsClassifier([...])|Classifier implementing a vote among neighbors within a given radius.| @@ -743,13 +743,13 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.p ||| |---|---| -|svm.LinearSVC([penalty, loss, dual, tol, C, ...])|Linear Support Vector Classification.| -|svm.LinearSVR(*[, epsilon, tol, C, loss, ...])|Linear Support Vector Regression.| +|**[svm.LinearSVC([penalty, loss, dual, tol, C, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC)**|**Linear Support Vector Classification.**| +|**[svm.LinearSVR(*[, epsilon, tol, C, loss, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR)**|**Linear Support Vector Regression.**| |svm.NuSVC(*[, nu, kernel, degree, gamma, ...])|Nu-Support Vector Classification.| |svm.NuSVR(*[, nu, C, kernel, degree, gamma, ...])|Nu Support Vector Regression.| -|svm.OneClassSVM(*[, kernel, degree, gamma, ...])|Unsupervised Outlier Detection.| -|svm.SVC(*[, C, kernel, degree, gamma, ...])|C-Support Vector Classification.| -|svm.SVR(*[, kernel, degree, gamma, coef0, ...])|Epsilon-Support Vector Regression.| +|**[svm.OneClassSVM(*[, kernel, degree, gamma, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM)**|**Unsupervised Outlier Detection.**| +|**[svm.SVC(*[, C, kernel, degree, gamma, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)**|**C-Support Vector Classification.**| +|**[svm.SVR(*[, kernel, degree, gamma, coef0, ...])](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR)**|**Epsilon-Support Vector Regression.**| |svm.l1_min_c(X, y, *[, loss, fit_intercept, ...])|Return the lowest bound for C.|