Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-19 15:28:16 +01:00 committed by GitHub
parent 9ca210ff43
commit 1066642527
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -185,9 +185,6 @@ pca = PCA(n_components=2)
# Train
pca.fit(data_r)
print(pca.explained_variance_ratio_) # -> [0.52996112 0.47003888]
print(pca.singular_values_) # -> [287.55360494 270.80938189]
# Use
transformed_data = pca.inverse_transform(data)
@ -200,5 +197,127 @@ plt.show()
![image2](image2.png)
## Inspect the extracted coordinate system
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
rng = np.random.default_rng(1)
a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
angle = -0.3
roation_matrix = np.array(
[[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]
)
data_r = data @ roation_matrix
pca = PCA(n_components=2)
# Train
pca.fit(data_r)
plt.plot([-1, 1], [0, 0], "k")
plt.plot([0, 0], [-1, 1], "k")
plt.plot(
[-pca.components_[0, 0], pca.components_[0, 0]],
[-pca.components_[0, 1], pca.components_[0, 1]],
"m",
)
plt.plot(
[-pca.components_[1, 0], pca.components_[1, 0]],
[-pca.components_[1, 1], pca.components_[1, 1]],
"c",
)
plt.show()
```
![image3](image3.png)
## PCA methods
|||
|---|---|
|[fit](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit)(X[, y])|Fit the model with X.|
|[fit_transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit_transform)(X[, y])|Fit the model with X and apply the dimensionality reduction on X.|
|[get_covariance](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.get_covariance)()|Compute data covariance with the generative model.|
|[get_feature_names_out](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.get_feature_names_out)([input_features])|Get output feature names for transformation.|
|[get_metadata_routing](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.get_metadata_routing)()|Get metadata routing of this object.|
|[get_params](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.get_params)([deep])|Get parameters for this estimator.|
|[get_precision](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.get_precision)()|Compute data precision matrix with the generative model.|
|[inverse_transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.inverse_transform)(X)|Transform data back to its original space.|
|[score](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.score)(X[, y])|Return the average log-likelihood of all samples.|
|[score_samples](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.score_samples)(X)|Return the log-likelihood of each sample.|
|[set_output](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.set_output)(*[, transform])|Set output container.|
|[set_params](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.set_params)(**params)|Set the parameters of this estimator.|
|[transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.transform)(X)|Apply dimensionality reduction to X.|
## PCA attributes
> **components_** : ndarray of shape (n_components, n_features)
>
> Principal axes in feature space, representing the directions of maximum variance in the data. Equivalently, the right singular vectors of the centered input data, parallel to its eigenvectors. The components are sorted by decreasing explained_variance_.
> **explained_variance_** : ndarray of shape (n_components,)
>
> The amount of variance explained by each of the selected components. The variance estimation uses n_samples - 1 degrees of freedom.
>
> Equal to n_components largest eigenvalues of the covariance matrix of X.
> **explained_variance_ratio_** : ndarray of shape (n_components,)
>
> Percentage of variance explained by each of the selected components.
>
> If n_components is not set then all components are stored and the sum of the ratios is equal to 1.0.
> **singular_values_** : ndarray of shape (n_components,)
>
> The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the n_components variables in the lower-dimensional space.
> **mean_** : ndarray of shape (n_features,)
>
> Per-feature empirical mean, estimated from the training set.
>
> Equal to X.mean(axis=0).
> **n_components_** : int
>
> The estimated number of components. When n_components is set to mle or a number between 0 and 1 (with svd_solver == full) this number is estimated from input data. Otherwise it equals the parameter n_components, or the lesser value of n_features and n_samples if n_components is None.
> **n_features_** : int
>
> Number of features in the training data.
> **n_samples_** : int
>
> Number of samples in the training data.
> **noise_variance_** : float
>
> The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See “Pattern Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to compute the estimated data covariance and score samples.
>
> Equal to the average of (min(n_features, n_samples) - n_components) smallest eigenvalues of the covariance matrix of X.
> **n_features_in_** : int
> Number of features seen during fit.
> **feature_names_in_** : ndarray of shape (n_features_in_,)
>
> Names of features seen during fit. Defined only when X has feature names that are all strings.