Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-14 21:35:31 +01:00 committed by GitHub
parent 752281dfe1
commit 11aa8963bf
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -8,16 +8,80 @@
## The goal ## The goal
Overview over the linear algebra functions of Numpy.
Questions to [David Rotermund](mailto:davrot@uni-bremen.de) Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
**There more functions in the [scipy linalg package](https://docs.scipy.org/doc/scipy/reference/linalg.html)!!!**
## The @ operator
@ => Matrix product
\* => outer product A[i] * B[i]
The @ operator is preferable to other methods when computing the matrix product between 2d arrays. The numpy.matmul function implements the @ operator.
```python
import numpy as np
a = np.arange(0, 3).reshape(3, 1)
b = np.arange(4, 7).reshape(1, 3)
print(a)
print()
print(b)
print()
print(a @ b)
print()
print(b @ a)
```
Output:
```python
[[0]
[1]
[2]]
[[4 5 6]]
[[ 0 0 0]
[ 4 5 6]
[ 8 10 12]]
[[17]]
```
For comparison the outer product:
```python
import numpy as np
a = np.arange(0, 3).reshape(3, 1)
b = np.arange(4, 7).reshape(1, 3)
print(a * b)
print()
print(b * a)
```
Output:
```python
[[ 0 0 0]
[ 4 5 6]
[ 8 10 12]]
[[ 0 0 0]
[ 4 5 6]
[ 8 10 12]]
```
The @ operator
Introduced in NumPy 1.10.0, the @ operator is preferable to other methods when computing the matrix product between 2d arrays. The numpy.matmul function implements the @ operator.
## [numpy.linalg](https://numpy.org/doc/stable/reference/routines.linalg.html) ## [numpy.linalg](https://numpy.org/doc/stable/reference/routines.linalg.html)
### Matrix and vector products ### [Matrix and vector products](https://numpy.org/doc/stable/reference/routines.linalg.html#matrix-and-vector-products)
||| |||
@ -34,7 +98,7 @@ Introduced in NumPy 1.10.0, the @ operator is preferable to other methods when c
|[linalg.matrix_power(a, n)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power)|Raise a square matrix to the (integer) power n.| |[linalg.matrix_power(a, n)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power)|Raise a square matrix to the (integer) power n.|
|[kron(a, b)](https://numpy.org/doc/stable/reference/generated/numpy.kron.html#numpy.kron)|Kronecker product of two arrays.| |[kron(a, b)](https://numpy.org/doc/stable/reference/generated/numpy.kron.html#numpy.kron)|Kronecker product of two arrays.|
### Decompositions ### [Decompositions](https://numpy.org/doc/stable/reference/routines.linalg.html#decompositions)
||| |||
|---|---| |---|---|
@ -42,7 +106,7 @@ Introduced in NumPy 1.10.0, the @ operator is preferable to other methods when c
|[linalg.qr(a[, mode])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr)|Compute the qr factorization of a matrix.| |[linalg.qr(a[, mode])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr)|Compute the qr factorization of a matrix.|
|[**linalg.svd(a[, full_matrices, compute_uv, ...])**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd)|**Singular Value Decomposition.**| |[**linalg.svd(a[, full_matrices, compute_uv, ...])**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd)|**Singular Value Decomposition.**|
### Matrix eigenvalues ### [Matrix eigenvalues](https://numpy.org/doc/stable/reference/routines.linalg.html#matrix-eigenvalues)
||| |||
|---|---| |---|---|
@ -51,7 +115,7 @@ Introduced in NumPy 1.10.0, the @ operator is preferable to other methods when c
|[linalg.eigvals(a)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals)|Compute the eigenvalues of a general matrix.| |[linalg.eigvals(a)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals)|Compute the eigenvalues of a general matrix.|
|[linalg.eigvalsh(a[, UPLO])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh)|Compute the eigenvalues of a complex Hermitian or real symmetric matrix.| |[linalg.eigvalsh(a[, UPLO])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh)|Compute the eigenvalues of a complex Hermitian or real symmetric matrix.|
### Norms and other numbers ### [Norms and other numbers](https://numpy.org/doc/stable/reference/routines.linalg.html#norms-and-other-numbers)
||| |||
|---|---| |---|---|
@ -62,7 +126,7 @@ Introduced in NumPy 1.10.0, the @ operator is preferable to other methods when c
|[linalg.slogdet(a)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet)|Compute the sign and (natural) logarithm of the determinant of an array.| |[linalg.slogdet(a)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet)|Compute the sign and (natural) logarithm of the determinant of an array.|
|[**trace(a[, offset, axis1, axis2, dtype, out])**](https://numpy.org/doc/stable/reference/generated/numpy.trace.html#numpy.trace)|**Return the sum along diagonals of the array.**| |[**trace(a[, offset, axis1, axis2, dtype, out])**](https://numpy.org/doc/stable/reference/generated/numpy.trace.html#numpy.trace)|**Return the sum along diagonals of the array.**|
### Solving equations and inverting matrices ### [Solving equations and inverting matrices](https://numpy.org/doc/stable/reference/routines.linalg.html#solving-equations-and-inverting-matrices)
||| |||
|---|---| |---|---|