Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-13 17:14:44 +01:00 committed by GitHub
parent 0d4c68cff4
commit 2088578821
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -1,4 +1,4 @@
# dtype
# Available dtype
{:.no_toc}
<nav markdown="1" class="toc-class">
@ -12,61 +12,114 @@ A numpy matrix can have differnt dtype or -- in other words -- differnt types of
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## Signed integer types
## [Signed integer types](https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases)
**Please use numpy.int8, numpy.int16, numpy.int32, and numpy.int64 !!!**
* *numpy.int8*: 8-bit signed integer (-128 to 127). Compatible with C char.
* *numpy.int8*:
* 8-bit signed integer (-128 to 127). Compatible with C char.
* *numpy.byte*
* Character code 'b'
* *numpy.int16*: 16-bit signed integer (-32 768 to 32 767). Compatible with C short
* *numpy.int16*:
* 16-bit signed integer (-32 768 to 32 767). Compatible with C short
* *numpy.short*
* Character code 'h'
* *numpy.int32*: 32-bit signed integer (-2 147 483 648 to 2 147 483 647). Compatible with C int
* *numpy.int32*:
* 32-bit signed integer (-2 147 483 648 to 2 147 483 647). Compatible with C int
* *numpy.intc*
* Character code 'i'
* *numpy.int64*: 64-bit signed integer (-9 223 372 036 854 775 808 to 9 223 372 036 854 775 807). Compatible with Python int and C long
* *numpy.int64*:
* 64-bit signed integer (-9 223 372 036 854 775 808 to 9 223 372 036 854 775 807). Compatible with Python int and C long
* *numpy.intp*
* *numpy.int_*
* Character code 'l'
*numpy.longlong*: Compatible with C long long
* *numpy.longlong*: Compatible with C long long
* Character code 'q'
## Unsigned integer types
## [Unsigned integer types](https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases)
**Please use numpy.uint8, numpy.uint16, numpy.uint32, and numpy.uint64 !!!**
* *numpy.uint8*: 8-bit unsigned integer (0 to 255). Compatible with C unsigned char.
* *numpy.uint8*:
* 8-bit unsigned integer (0 to 255). Compatible with C unsigned char.
* *numpy.ubyte*
* Character code 'B'
* *numpy.uint16*: 16-bit unsigned integer (0 to 65 535). Compatible with C unsigned short.
* *numpy.uint16*:
* 16-bit unsigned integer (0 to 65 535). Compatible with C unsigned short.
* *numpy.ushort*
* Character code 'H'
* *numpy.uint32*: 32-bit unsigned integer (0 to 4 294 967 295). Compatible with C unsigned int.
* *numpy.uint32*:
* 32-bit unsigned integer (0 to 4 294 967 295). Compatible with C unsigned int.
* *numpy.uintc*
* Character code 'I'
* *numpy.uint64*: 64-bit unsigned integer (0 to 18 446 744 073 709 551 615). Compatible with C unsigned long
* *numpy.uint64*:
* 64-bit unsigned integer (0 to 18 446 744 073 709 551 615). Compatible with C unsigned long
* numpy.uint
* numpy.uintp
* Character code 'L'
* numpy.ulonglong: Compatible with C unsigned long long
* *numpy.ulonglong*: Compatible with C unsigned long long
* Character code 'Q'
## [Floating-point types](https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases)
**Please use numpy.float32 and numpy.float64 !!! (And in very special cases numpy.float128)**
* *numpy.float16*:
* 16-bit-precision.
* *numpy.half*
* floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa.
* Character code 'e'
* *numpy.float32*:
* 32-bit-precision. Compatible with C float
* *numpy.single*
* floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa.
* Character code 'f'
* *numpy.float64*:
* 64-bit precision. Compatible with Python float and C double.
* *numpy.double*
* *numpy.float_*
* floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa.
* Character code 'd'
* *numpy.float128*:
* 128-bit extended-precision floating-point number type.
* *numpy.longdouble*
* *numpy.longfloat*
* Compatible with C long double but not necessarily with IEEE 754 quadruple-precision.
* Character code 'g'
## [Complex floating-point types](https://numpy.org/doc/stable/reference/arrays.scalars.html#sized-aliases)
**Please use numpy.complex64 and numpy.complex128 !!! (And in very special cases numpy.complex256)**
* *numpy.complex64*:
* Composed of 2 32-bit-precision floating-point numbers.
* *numpy.singlecomplex*
* *numpy.csingle*
* Character code 'F'
* *numpy.complex128*:
* Composed of 2 64-bit-precision floating-point numbers. Compatible with Python complex.
* *numpy.cdouble*
* *numpy.cfloat*
* *numpy.complex_*
* Character code 'D'
* *numpy.complex256*:
* Composed of 2 128-bit extended-precision floating-point numbers.
* *numpy.clongdouble*
* *numpy.clongfloat*
* *numpy.longcomplex*
* Character code 'G'