mirror of
https://github.com/davrot/pytutorial.git
synced 2025-04-17 20:56:41 +02:00
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
391fc432b4
commit
21e33d248d
1 changed files with 69 additions and 64 deletions
|
@ -193,7 +193,6 @@ plt.show()
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pywt
|
||||
from tqdm import trange
|
||||
|
||||
|
||||
# Calculate the wavelet scales we requested
|
||||
|
@ -301,6 +300,66 @@ def calculate_wavelet_tf_complex_coeffs(
|
|||
return (complex_spectrum, frequency_axis, t)
|
||||
|
||||
|
||||
def calculate_spectral_coherence(
|
||||
n_trials: int,
|
||||
y_a: np.ndarray,
|
||||
y_b: np.ndarray,
|
||||
number_of_frequences: int,
|
||||
frequency_range_min: float,
|
||||
frequency_range_max: float,
|
||||
dt: float,
|
||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
|
||||
for trial_id in range(0, n_trials):
|
||||
wave_data_a, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
||||
data=y_a[..., trial_id],
|
||||
number_of_frequences=number_of_frequences,
|
||||
frequency_range_min=frequency_range_min,
|
||||
frequency_range_max=frequency_range_max,
|
||||
dt=dt,
|
||||
)
|
||||
|
||||
wave_data_b, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
||||
data=y_b[..., trial_id],
|
||||
number_of_frequences=number_of_frequences,
|
||||
frequency_range_min=frequency_range_min,
|
||||
frequency_range_max=frequency_range_max,
|
||||
dt=dt,
|
||||
)
|
||||
|
||||
cone_of_influence = calculate_cone_of_influence(dt, frequency_axis)
|
||||
|
||||
wave_data_a = mask_cone_of_influence(
|
||||
complex_spectrum=wave_data_a,
|
||||
cone_of_influence=cone_of_influence,
|
||||
fill_value=np.NaN,
|
||||
)
|
||||
|
||||
wave_data_b = mask_cone_of_influence(
|
||||
complex_spectrum=wave_data_b,
|
||||
cone_of_influence=cone_of_influence,
|
||||
fill_value=np.NaN,
|
||||
)
|
||||
|
||||
if trial_id == 0:
|
||||
calculation = wave_data_a * wave_data_b
|
||||
norm_data_a = np.abs(wave_data_a) ** 2
|
||||
norm_data_b = np.abs(wave_data_b) ** 2
|
||||
|
||||
else:
|
||||
calculation += wave_data_a * wave_data_b
|
||||
norm_data_a += np.abs(wave_data_a) ** 2
|
||||
norm_data_b += np.abs(wave_data_b) ** 2
|
||||
|
||||
calculation /= float(n_trials)
|
||||
norm_data_a /= float(n_trials)
|
||||
norm_data_b /= float(n_trials)
|
||||
|
||||
coherence = np.abs(calculation) ** 2 / (norm_data_a * norm_data_b)
|
||||
|
||||
return np.nanmean(coherence, axis=-1), frequency_axis, t
|
||||
|
||||
|
||||
# Parameters for the wavelet transform
|
||||
number_of_frequences: int = 25 # frequency bands
|
||||
frequency_range_min: float = 5 # Hz
|
||||
|
@ -338,72 +397,18 @@ if delay_enable:
|
|||
else:
|
||||
y_b = y_a.copy()
|
||||
|
||||
for trial_id in trange(0, n_trials):
|
||||
wave_data_a, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
||||
data=y_a[..., trial_id],
|
||||
number_of_frequences=number_of_frequences,
|
||||
frequency_range_min=frequency_range_min,
|
||||
frequency_range_max=frequency_range_max,
|
||||
dt=dt,
|
||||
)
|
||||
|
||||
wave_data_b, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
||||
data=y_b[..., trial_id],
|
||||
number_of_frequences=number_of_frequences,
|
||||
frequency_range_min=frequency_range_min,
|
||||
frequency_range_max=frequency_range_max,
|
||||
dt=dt,
|
||||
)
|
||||
|
||||
cone_of_influence = calculate_cone_of_influence(dt, frequency_axis)
|
||||
|
||||
wave_data_a = mask_cone_of_influence(
|
||||
complex_spectrum=wave_data_a,
|
||||
cone_of_influence=cone_of_influence,
|
||||
fill_value=np.NaN,
|
||||
)
|
||||
|
||||
wave_data_b = mask_cone_of_influence(
|
||||
complex_spectrum=wave_data_b,
|
||||
cone_of_influence=cone_of_influence,
|
||||
fill_value=np.NaN,
|
||||
)
|
||||
|
||||
if trial_id == 0:
|
||||
calculation = wave_data_a * wave_data_b
|
||||
norm_data_a = np.abs(wave_data_a) ** 2
|
||||
norm_data_b = np.abs(wave_data_b) ** 2
|
||||
|
||||
else:
|
||||
calculation += wave_data_a * wave_data_b
|
||||
norm_data_a += np.abs(wave_data_a) ** 2
|
||||
norm_data_b += np.abs(wave_data_b) ** 2
|
||||
|
||||
calculation /= float(n_trials)
|
||||
norm_data_a /= float(n_trials)
|
||||
norm_data_b /= float(n_trials)
|
||||
|
||||
coherence = np.abs(calculation) ** 2 / (norm_data_a * norm_data_b)
|
||||
|
||||
y_reduction_to_ticks: int = 10
|
||||
x_reduction_to_ticks: int = 10
|
||||
y_round: int = 1
|
||||
x_round: int = 1
|
||||
|
||||
freq_ticks, freq_values = get_y_ticks(
|
||||
reduction_to_ticks=y_reduction_to_ticks,
|
||||
frequency_axis=frequency_axis,
|
||||
round=y_round,
|
||||
)
|
||||
|
||||
time_ticks, time_values = get_x_ticks(
|
||||
reduction_to_ticks=x_reduction_to_ticks,
|
||||
coherence, frequency_axis, t = calculate_spectral_coherence(
|
||||
n_trials=n_trials,
|
||||
y_a=y_a,
|
||||
y_b=y_b,
|
||||
number_of_frequences=number_of_frequences,
|
||||
frequency_range_min=frequency_range_min,
|
||||
frequency_range_max=frequency_range_max,
|
||||
dt=dt,
|
||||
number_of_timesteps=t.shape[0],
|
||||
round=x_round,
|
||||
)
|
||||
|
||||
plt.plot(frequency_axis, np.nanmean(coherence, axis=-1))
|
||||
|
||||
plt.plot(frequency_axis, coherence)
|
||||
plt.ylabel("Spectral Coherence")
|
||||
plt.xlabel("Frequency [Hz]")
|
||||
plt.show()
|
||||
|
|
Loading…
Add table
Reference in a new issue