Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
71db56af47
commit
26acb1c16f
1 changed files with 90 additions and 12 deletions
|
@ -561,6 +561,96 @@ H 3.300000
|
||||||
dtype: float64
|
dtype: float64
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### [pandas.concat](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html) and [pandas.Series.sort_index](https://pandas.pydata.org/docs/reference/api/pandas.Series.sort_index.html) and [pandas.Series.sort_values](https://pandas.pydata.org/docs/reference/api/pandas.Series.sort_values.html)
|
||||||
|
|
||||||
|
```python
|
||||||
|
pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=None)
|
||||||
|
```
|
||||||
|
|
||||||
|
> Concatenate pandas objects along a particular axis.
|
||||||
|
>
|
||||||
|
> Allows optional set logic along the other axes.
|
||||||
|
>
|
||||||
|
> Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.
|
||||||
|
|
||||||
|
```python
|
||||||
|
Series.sort_index(*, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None)
|
||||||
|
```
|
||||||
|
|
||||||
|
> Sort Series by index labels.
|
||||||
|
>
|
||||||
|
> Returns a new Series sorted by label if inplace argument is False, otherwise updates the original series and returns None.
|
||||||
|
|
||||||
|
```python
|
||||||
|
Series.sort_values(*, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)
|
||||||
|
```
|
||||||
|
> Sort by the values.
|
||||||
|
>
|
||||||
|
> Sort a Series in ascending or descending order by some criterion.
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
index_1 = pd.Series(["A", "B", "C", "D", "E"])
|
||||||
|
rng = np.random.default_rng()
|
||||||
|
np_data_1 = rng.random((5))
|
||||||
|
data_1 = pd.Series(np_data_1, index=index_1)
|
||||||
|
|
||||||
|
index_2 = pd.Series(["D", "E", "F", "G", "H"])
|
||||||
|
rng = np.random.default_rng()
|
||||||
|
np_data_2 = rng.random((5))
|
||||||
|
data_2 = pd.Series(np_data_2, index=index_2)
|
||||||
|
|
||||||
|
data_3 = pd.concat([data_1, data_2])
|
||||||
|
print(data_3)
|
||||||
|
print()
|
||||||
|
print(data_3.sort_index())
|
||||||
|
print()
|
||||||
|
print(data_3.sort_values())
|
||||||
|
print()
|
||||||
|
```
|
||||||
|
|
||||||
|
Output:
|
||||||
|
|
||||||
|
```python
|
||||||
|
A 0.480872
|
||||||
|
B 0.830495
|
||||||
|
C 0.420633
|
||||||
|
D 0.824773
|
||||||
|
E 0.580569
|
||||||
|
D 0.224508
|
||||||
|
E 0.250787
|
||||||
|
F 0.056334
|
||||||
|
G 0.880224
|
||||||
|
H 0.552785
|
||||||
|
dtype: float64
|
||||||
|
|
||||||
|
A 0.480872
|
||||||
|
B 0.830495
|
||||||
|
C 0.420633
|
||||||
|
D 0.824773
|
||||||
|
D 0.224508
|
||||||
|
E 0.580569
|
||||||
|
E 0.250787
|
||||||
|
F 0.056334
|
||||||
|
G 0.880224
|
||||||
|
H 0.552785
|
||||||
|
dtype: float64
|
||||||
|
|
||||||
|
F 0.056334
|
||||||
|
D 0.224508
|
||||||
|
E 0.250787
|
||||||
|
C 0.420633
|
||||||
|
A 0.480872
|
||||||
|
H 0.552785
|
||||||
|
E 0.580569
|
||||||
|
D 0.824773
|
||||||
|
B 0.830495
|
||||||
|
G 0.880224
|
||||||
|
dtype: float64
|
||||||
|
```
|
||||||
|
|
||||||
## [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame)
|
## [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame)
|
||||||
|
|
||||||
|
@ -573,18 +663,6 @@ class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=Non
|
||||||
> Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.
|
> Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.
|
||||||
|
|
||||||
|
|
||||||
## [pandas.concat](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html)
|
|
||||||
|
|
||||||
```python
|
|
||||||
pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=None)
|
|
||||||
```
|
|
||||||
|
|
||||||
> Concatenate pandas objects along a particular axis.
|
|
||||||
>
|
|
||||||
> Allows optional set logic along the other axes.
|
|
||||||
>
|
|
||||||
> Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.
|
|
||||||
|
|
||||||
## Saving (pandas.DataFrame.to_pickle) / loading (pandas.read_pickle) data ‘natively’
|
## Saving (pandas.DataFrame.to_pickle) / loading (pandas.read_pickle) data ‘natively’
|
||||||
|
|
||||||
Save:
|
Save:
|
||||||
|
|
Loading…
Reference in a new issue